Spaces:
Build error
Build error
import gradio as gr | |
from gradio import mix | |
import numpy as np | |
import torch | |
from keras.preprocessing.sequence import pad_sequences | |
import pickle | |
from huggingface_hub import from_pretrained_keras | |
model = from_pretrained_keras("keras-io/text-generation-miniature-gpt") | |
with open('tokenizer.pickle', 'rb') as handle: | |
tokenizer = pickle.load(handle) | |
#def tokenize_data(text): | |
# Tokenize the review body | |
# input_ = str(text) + ' </s>' | |
# max_len = 80 | |
# tokenize inputs | |
# tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') | |
# inputs={"input_ids": tokenized_inputs['input_ids'], | |
# "attention_mask": tokenized_inputs['attention_mask']} | |
# return inputs | |
def generate_answers(text): | |
sequence_test = tokenizer.texts_to_sequences([text]) | |
padded_test = pad_sequences(sequence_test, maxlen= 80, padding='post') | |
predictions,_ = model.predict(padded_test) | |
results = np.argmax(predictions, axis=1)[0] | |
answer = tokenizer.sequences_to_texts([results] ) | |
answertoString = ' '.join([str(elem) for elem in answer]) | |
return answertoString | |
examples = [["The movie was nice, "], ["It was showing nothing special to "]] | |
title = "Text Generation with Miniature GPT" | |
description = "Gradio Demo for a miniature with GPT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." | |
iface = gr.Interface(fn=generate_answers, title = title, description=description, inputs=['text'], outputs=["text"], examples=examples) | |
iface.launch(inline=False, share=True) |