yusyel commited on
Commit
d4e742a
Β·
1 Parent(s): 723e7d6
Files changed (3) hide show
  1. README.md +5 -4
  2. app.py +190 -0
  3. requirements.txt +5 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Timeseries Forecasting For Weather
3
- emoji: 🐨
4
- colorFrom: blue
5
- colorTo: yellow
6
  sdk: streamlit
7
  sdk_version: 1.10.0
8
  app_file: app.py
@@ -10,3 +10,4 @@ pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
1
  ---
2
+ title: Test
3
+ emoji: πŸ“ˆ
4
+ colorFrom: gray
5
+ colorTo: red
6
  sdk: streamlit
7
  sdk_version: 1.10.0
8
  app_file: app.py
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
app.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #%%
2
+ from matplotlib.pyplot import title
3
+ import tensorflow as tf
4
+ from tensorflow import keras
5
+ from huggingface_hub import from_pretrained_keras
6
+ import pandas as pd
7
+ import matplotlib.pyplot as plt
8
+ import streamlit as st
9
+ from zipfile import ZipFile
10
+ import os
11
+
12
+ import warnings
13
+ warnings.filterwarnings("ignore")
14
+
15
+ uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
16
+ zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
17
+ zip_file = ZipFile(zip_path)
18
+ zip_file.extractall()
19
+ csv_path = "jena_climate_2009_2016.csv"
20
+ df = pd.read_csv(csv_path)
21
+
22
+ #%%
23
+
24
+ title = "Timeseries forecasting for weather prediction"
25
+
26
+
27
+
28
+ # %% model
29
+
30
+ titles = [
31
+ "Pressure",
32
+ "Temperature",
33
+ "Temperature in Kelvin",
34
+ "Temperature (dew point)",
35
+ "Relative Humidity",
36
+ "Saturation vapor pressure",
37
+ "Vapor pressure",
38
+ "Vapor pressure deficit",
39
+ "Specific humidity",
40
+ "Water vapor concentration",
41
+ "Airtight",
42
+ "Wind speed",
43
+ "Maximum wind speed",
44
+ "Wind direction in degrees",
45
+ ]
46
+
47
+ feature_keys = [
48
+ "p (mbar)",
49
+ "T (degC)",
50
+ "Tpot (K)",
51
+ "Tdew (degC)",
52
+ "rh (%)",
53
+ "VPmax (mbar)",
54
+ "VPact (mbar)",
55
+ "VPdef (mbar)",
56
+ "sh (g/kg)",
57
+ "H2OC (mmol/mol)",
58
+ "rho (g/m**3)",
59
+ "wv (m/s)",
60
+ "max. wv (m/s)",
61
+ "wd (deg)",
62
+ ]
63
+
64
+ date_time_key = "Date Time"
65
+ split_fraction = 0.715
66
+ train_split = int(split_fraction * int(df.shape[0]))
67
+ step = 6
68
+
69
+ past = 720
70
+ future = 72
71
+ learning_rate = 0.001
72
+ batch_size = 256
73
+ epochs = 10
74
+
75
+
76
+ def normalize(data, train_split):
77
+ data_mean = data[:train_split].mean(axis=0)
78
+ data_std = data[:train_split].std(axis=0)
79
+ return (data - data_mean) / data_std
80
+
81
+
82
+ print(
83
+ "The selected parameters are:",
84
+ ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
85
+ )
86
+ selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]
87
+ features = df[selected_features]
88
+ features.index = df[date_time_key]
89
+ features.head()
90
+
91
+ features = normalize(features.values, train_split)
92
+ features = pd.DataFrame(features)
93
+ features.head()
94
+
95
+ train_data = features.loc[0 : train_split - 1]
96
+ val_data = features.loc[train_split:]
97
+
98
+
99
+ split_fraction = 0.715
100
+ train_split = int(split_fraction * int(df.shape[0]))
101
+ step = 6
102
+
103
+ past = 720
104
+ future = 72
105
+ learning_rate = 0.001
106
+ batch_size = 256
107
+ epochs = 10
108
+
109
+
110
+ def normalize(data, train_split):
111
+ data_mean = data[:train_split].mean(axis=0)
112
+ data_std = data[:train_split].std(axis=0)
113
+ return (data - data_mean) / data_std
114
+ print(
115
+ "The selected parameters are:",
116
+ ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
117
+ )
118
+ selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]
119
+ features = df[selected_features]
120
+ features.index = df[date_time_key]
121
+ features.head()
122
+
123
+ features = normalize(features.values, train_split)
124
+ features = pd.DataFrame(features)
125
+ features.head()
126
+
127
+ train_data = features.loc[0 : train_split - 1]
128
+ val_data = features.loc[train_split:]
129
+ start = past + future
130
+ end = start + train_split
131
+
132
+ x_train = train_data[[i for i in range(7)]].values
133
+ y_train = features.iloc[start:end][[1]]
134
+
135
+ sequence_length = int(past / step)
136
+ x_end = len(val_data) - past - future
137
+
138
+ label_start = train_split + past + future
139
+
140
+ x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
141
+ y_val = features.iloc[label_start:][[1]]
142
+
143
+ dataset_val = keras.preprocessing.timeseries_dataset_from_array(
144
+ x_val,
145
+ y_val,
146
+ sequence_length=sequence_length,
147
+ sampling_rate=step,
148
+ batch_size=batch_size,
149
+ )
150
+ #%%
151
+ model = from_pretrained_keras("yusyel/test")
152
+
153
+ #%% please don't code shaming me :/
154
+ st.set_option('deprecation.showPyplotGlobalUse', False)
155
+ def plot():
156
+ n = st.sidebar.slider("Step", min_value = 1, max_value=5, value = 1)
157
+ def show_plot(plot_data, delta, title):
158
+ labels = ["History", "True Future", "Model Prediction"]
159
+ marker = [".-", "rx", "go"]
160
+ time_steps = list(range(-(plot_data[0].shape[0]), 0))
161
+ if delta:
162
+ future = delta
163
+ else:
164
+ future = 0
165
+
166
+ plt.title(title)
167
+ for i, val in enumerate(plot_data):
168
+ if i:
169
+ plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i])
170
+ else:
171
+ plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
172
+ plt.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05),
173
+ ncol=3, fancybox=True, shadow=True)
174
+ plt.xlim([time_steps[0], (future + 5) * 2])
175
+ plt.xlabel("Time-Step")
176
+ plt.show()
177
+ return
178
+
179
+
180
+ for x, y in dataset_val.take(n):
181
+ show_plot(
182
+ [x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]],
183
+ 12,
184
+ "Single Step Prediction",
185
+ )
186
+
187
+ fig = plot()
188
+ st.pyplot(fig)
189
+
190
+ # %%
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ tensorflow
2
+ huggingface_hub
3
+ pandas
4
+ streamlit
5
+ matplotlib