shivi commited on
Commit
7a44257
Β·
1 Parent(s): 3d12539

changed blocks app to interface based

Browse files
app.py CHANGED
@@ -8,45 +8,56 @@ example_list = glob.glob("examples/*")
8
  example_list = list(map(lambda el:[el], example_list))
9
 
10
 
11
- def load_example(video):
12
- return video[0]
13
 
14
- demo = gr.Blocks()
15
 
 
 
 
 
 
16
 
 
17
 
18
- with demo:
 
 
 
 
19
 
20
- gr.Markdown("# **<p align='center'>Video Classification with Transformers</p>**")
21
- gr.Markdown("This space demonstrates the use of hybrid Transformer-based models for video classification that operate on CNN feature maps.")
22
 
23
- with gr.Tabs():
24
 
25
- with gr.TabItem("Upload & Predict"):
26
- with gr.Box():
27
 
28
- with gr.Row():
29
- input_video = gr.Video(label="Input Video", show_label=True)
30
- output_label = gr.Label(label="Model Output", show_label=True)
31
- output_gif = gr.Image(label="Video Gif", show_label=True)
32
 
33
- gr.Markdown("**Predict**")
34
 
35
- with gr.Box():
36
- with gr.Row():
37
- submit_button = gr.Button("Submit")
38
 
39
- gr.Markdown("**Examples:**")
40
- gr.Markdown("The model is trained to classify videos belonging to the following classes:")
41
- gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
42
-
43
- with gr.Column():
44
- # gr.Examples("examples", [input_video], [output_label,output_gif], predict_action, cache_examples=True)
45
- examples = gr.components.Dataset(components=[input_video], samples=example_list, type='values')
46
- examples.click(load_example, examples, input_video)
47
 
48
- submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
49
 
50
- gr.Markdown('\n Author: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model')
51
 
52
- demo.launch()
 
 
8
  example_list = list(map(lambda el:[el], example_list))
9
 
10
 
11
+ # def load_example(video):
12
+ # return video[0]
13
 
14
+ # demo = gr.Blocks()
15
 
16
+ input_video = gr.Video(label="Input Video", show_label=True)
17
+ output_label = gr.Label(label="Model Output", show_label=True)
18
+ output_gif = gr.Image(label="Video Gif", show_label=True)
19
+ title = "Video Classification with Transformers"
20
+ description = "This space demonstrates the use of a hybrid (CNN-Transformer based) model for video classification. \n The model can classify videos belonging to the following action categories: CricketShot, Punch, ShavingBeard, TennisSwing, PlayingCello. \n Upload a video and try out πŸ€— "
21
 
22
+ article = '\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model'
23
 
24
+ gr.Interface(predict_action, input_video, [output_label, output_gif], examples=example_list, allow_flagging=False, analytics_enabled=False,
25
+ title=title, description=description, cache_examples=True, article=article).launch(enable_queue=True,share=True)
26
+
27
+
28
+ # with demo:
29
 
30
+ # gr.Markdown("# **<p align='center'>Video Classification with Transformers</p>**")
31
+ # gr.Markdown("This space demonstrates the use of hybrid Transformer-based models for video classification that operate on CNN feature maps.")
32
 
33
+ # with gr.Tabs():
34
 
35
+ # with gr.TabItem("Upload & Predict"):
36
+ # with gr.Box():
37
 
38
+ # with gr.Row():
39
+ # input_video = gr.Video(label="Input Video", show_label=True)
40
+ # output_label = gr.Label(label="Model Output", show_label=True)
41
+ # output_gif = gr.Image(label="Video Gif", show_label=True)
42
 
43
+ # gr.Markdown("**Predict**")
44
 
45
+ # with gr.Box():
46
+ # with gr.Row():
47
+ # submit_button = gr.Button("Submit")
48
 
49
+ # gr.Markdown("**Examples:**")
50
+ # gr.Markdown("The model is trained to classify videos belonging to the following classes:")
51
+ # gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing")
52
+
53
+ # with gr.Column():
54
+ # # gr.Examples("examples", [input_video], [output_label,output_gif], predict_action, cache_examples=True)
55
+ # examples = gr.components.Dataset(components=[input_video], samples=example_list, type='values')
56
+ # examples.click(load_example, examples, input_video)
57
 
58
+ # submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif])
59
 
60
+ # gr.Markdown('\n Author: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/video_transformers/\">Keras example</a> by <a href=\"https://twitter.com/RisingSayak\">Sayak Paul</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/video-transformers/\"> Video Classification</a> model')
61
 
62
+ # demo.launch()
63
+
examples/v_PlayingCello_g04_c02.avi ADDED
Binary file (781 kB). View file
 
examples/v_Punch_g03_c03.avi ADDED
Binary file (400 kB). View file
 
examples/v_ShavingBeard_g01_c01.avi ADDED
Binary file (313 kB). View file
 
examples/v_TennisSwing_g02_c01.avi ADDED
Binary file (189 kB). View file