File size: 32,483 Bytes
4304c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
from __future__ import annotations

import copy
import logging
import re
from abc import ABC, abstractmethod
from collections.abc import Callable, Collection, Iterable, Sequence, Set
from dataclasses import dataclass
from enum import Enum
from typing import (
    Any,
    Literal,
    Optional,
    TypedDict,
    TypeVar,
    Union,
)

from core.rag.models.document import BaseDocumentTransformer, Document

logger = logging.getLogger(__name__)

TS = TypeVar("TS", bound="TextSplitter")


def _split_text_with_regex(

        text: str, separator: str, keep_separator: bool

) -> list[str]:
    # Now that we have the separator, split the text
    if separator:
        if keep_separator:
            # The parentheses in the pattern keep the delimiters in the result.
            _splits = re.split(f"({re.escape(separator)})", text)
            splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)]
            if len(_splits) % 2 == 0:
                splits += _splits[-1:]
            splits = [_splits[0]] + splits
        else:
            splits = re.split(separator, text)
    else:
        splits = list(text)
    return [s for s in splits if s != ""]


class TextSplitter(BaseDocumentTransformer, ABC):
    """Interface for splitting text into chunks."""

    def __init__(

            self,

            chunk_size: int = 4000,

            chunk_overlap: int = 200,

            length_function: Callable[[str], int] = len,

            keep_separator: bool = False,

            add_start_index: bool = False,

    ) -> None:
        """Create a new TextSplitter.



        Args:

            chunk_size: Maximum size of chunks to return

            chunk_overlap: Overlap in characters between chunks

            length_function: Function that measures the length of given chunks

            keep_separator: Whether to keep the separator in the chunks

            add_start_index: If `True`, includes chunk's start index in metadata

        """
        if chunk_overlap > chunk_size:
            raise ValueError(
                f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
                f"({chunk_size}), should be smaller."
            )
        self._chunk_size = chunk_size
        self._chunk_overlap = chunk_overlap
        self._length_function = length_function
        self._keep_separator = keep_separator
        self._add_start_index = add_start_index

    @abstractmethod
    def split_text(self, text: str) -> list[str]:
        """Split text into multiple components."""

    def create_documents(

            self, texts: list[str], metadatas: Optional[list[dict]] = None

    ) -> list[Document]:
        """Create documents from a list of texts."""
        _metadatas = metadatas or [{}] * len(texts)
        documents = []
        for i, text in enumerate(texts):
            index = -1
            for chunk in self.split_text(text):
                metadata = copy.deepcopy(_metadatas[i])
                if self._add_start_index:
                    index = text.find(chunk, index + 1)
                    metadata["start_index"] = index
                new_doc = Document(page_content=chunk, metadata=metadata)
                documents.append(new_doc)
        return documents

    def split_documents(self, documents: Iterable[Document]) -> list[Document]:
        """Split documents."""
        texts, metadatas = [], []
        for doc in documents:
            texts.append(doc.page_content)
            metadatas.append(doc.metadata)
        return self.create_documents(texts, metadatas=metadatas)

    def _join_docs(self, docs: list[str], separator: str) -> Optional[str]:
        text = separator.join(docs)
        text = text.strip()
        if text == "":
            return None
        else:
            return text

    def _merge_splits(self, splits: Iterable[str], separator: str) -> list[str]:
        # We now want to combine these smaller pieces into medium size
        # chunks to send to the LLM.
        separator_len = self._length_function(separator)

        docs = []
        current_doc: list[str] = []
        total = 0
        for d in splits:
            _len = self._length_function(d)
            if (
                    total + _len + (separator_len if len(current_doc) > 0 else 0)
                    > self._chunk_size
            ):
                if total > self._chunk_size:
                    logger.warning(
                        f"Created a chunk of size {total}, "
                        f"which is longer than the specified {self._chunk_size}"
                    )
                if len(current_doc) > 0:
                    doc = self._join_docs(current_doc, separator)
                    if doc is not None:
                        docs.append(doc)
                    # Keep on popping if:
                    # - we have a larger chunk than in the chunk overlap
                    # - or if we still have any chunks and the length is long
                    while total > self._chunk_overlap or (
                            total + _len + (separator_len if len(current_doc) > 0 else 0)
                            > self._chunk_size
                            and total > 0
                    ):
                        total -= self._length_function(current_doc[0]) + (
                            separator_len if len(current_doc) > 1 else 0
                        )
                        current_doc = current_doc[1:]
            current_doc.append(d)
            total += _len + (separator_len if len(current_doc) > 1 else 0)
        doc = self._join_docs(current_doc, separator)
        if doc is not None:
            docs.append(doc)
        return docs

    @classmethod
    def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter:
        """Text splitter that uses HuggingFace tokenizer to count length."""
        try:
            from transformers import PreTrainedTokenizerBase

            if not isinstance(tokenizer, PreTrainedTokenizerBase):
                raise ValueError(
                    "Tokenizer received was not an instance of PreTrainedTokenizerBase"
                )

            def _huggingface_tokenizer_length(text: str) -> int:
                return len(tokenizer.encode(text))

        except ImportError:
            raise ValueError(
                "Could not import transformers python package. "
                "Please install it with `pip install transformers`."
            )
        return cls(length_function=_huggingface_tokenizer_length, **kwargs)

    @classmethod
    def from_tiktoken_encoder(

            cls: type[TS],

            encoding_name: str = "gpt2",

            model_name: Optional[str] = None,

            allowed_special: Union[Literal["all"], Set[str]] = set(),

            disallowed_special: Union[Literal["all"], Collection[str]] = "all",

            **kwargs: Any,

    ) -> TS:
        """Text splitter that uses tiktoken encoder to count length."""
        try:
            import tiktoken
        except ImportError:
            raise ImportError(
                "Could not import tiktoken python package. "
                "This is needed in order to calculate max_tokens_for_prompt. "
                "Please install it with `pip install tiktoken`."
            )

        if model_name is not None:
            enc = tiktoken.encoding_for_model(model_name)
        else:
            enc = tiktoken.get_encoding(encoding_name)

        def _tiktoken_encoder(text: str) -> int:
            return len(
                enc.encode(
                    text,
                    allowed_special=allowed_special,
                    disallowed_special=disallowed_special,
                )
            )

        if issubclass(cls, TokenTextSplitter):
            extra_kwargs = {
                "encoding_name": encoding_name,
                "model_name": model_name,
                "allowed_special": allowed_special,
                "disallowed_special": disallowed_special,
            }
            kwargs = {**kwargs, **extra_kwargs}

        return cls(length_function=_tiktoken_encoder, **kwargs)

    def transform_documents(

            self, documents: Sequence[Document], **kwargs: Any

    ) -> Sequence[Document]:
        """Transform sequence of documents by splitting them."""
        return self.split_documents(list(documents))

    async def atransform_documents(

            self, documents: Sequence[Document], **kwargs: Any

    ) -> Sequence[Document]:
        """Asynchronously transform a sequence of documents by splitting them."""
        raise NotImplementedError


class CharacterTextSplitter(TextSplitter):
    """Splitting text that looks at characters."""

    def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None:
        """Create a new TextSplitter."""
        super().__init__(**kwargs)
        self._separator = separator

    def split_text(self, text: str) -> list[str]:
        """Split incoming text and return chunks."""
        # First we naively split the large input into a bunch of smaller ones.
        splits = _split_text_with_regex(text, self._separator, self._keep_separator)
        _separator = "" if self._keep_separator else self._separator
        return self._merge_splits(splits, _separator)


class LineType(TypedDict):
    """Line type as typed dict."""

    metadata: dict[str, str]
    content: str


class HeaderType(TypedDict):
    """Header type as typed dict."""

    level: int
    name: str
    data: str


class MarkdownHeaderTextSplitter:
    """Splitting markdown files based on specified headers."""

    def __init__(

            self, headers_to_split_on: list[tuple[str, str]], return_each_line: bool = False

    ):
        """Create a new MarkdownHeaderTextSplitter.



        Args:

            headers_to_split_on: Headers we want to track

            return_each_line: Return each line w/ associated headers

        """
        # Output line-by-line or aggregated into chunks w/ common headers
        self.return_each_line = return_each_line
        # Given the headers we want to split on,
        # (e.g., "#, ##, etc") order by length
        self.headers_to_split_on = sorted(
            headers_to_split_on, key=lambda split: len(split[0]), reverse=True
        )

    def aggregate_lines_to_chunks(self, lines: list[LineType]) -> list[Document]:
        """Combine lines with common metadata into chunks

        Args:

            lines: Line of text / associated header metadata

        """
        aggregated_chunks: list[LineType] = []

        for line in lines:
            if (
                    aggregated_chunks
                    and aggregated_chunks[-1]["metadata"] == line["metadata"]
            ):
                # If the last line in the aggregated list
                # has the same metadata as the current line,
                # append the current content to the last lines's content
                aggregated_chunks[-1]["content"] += "  \n" + line["content"]
            else:
                # Otherwise, append the current line to the aggregated list
                aggregated_chunks.append(line)

        return [
            Document(page_content=chunk["content"], metadata=chunk["metadata"])
            for chunk in aggregated_chunks
        ]

    def split_text(self, text: str) -> list[Document]:
        """Split markdown file

        Args:

            text: Markdown file"""

        # Split the input text by newline character ("\n").
        lines = text.split("\n")
        # Final output
        lines_with_metadata: list[LineType] = []
        # Content and metadata of the chunk currently being processed
        current_content: list[str] = []
        current_metadata: dict[str, str] = {}
        # Keep track of the nested header structure
        # header_stack: List[Dict[str, Union[int, str]]] = []
        header_stack: list[HeaderType] = []
        initial_metadata: dict[str, str] = {}

        for line in lines:
            stripped_line = line.strip()
            # Check each line against each of the header types (e.g., #, ##)
            for sep, name in self.headers_to_split_on:
                # Check if line starts with a header that we intend to split on
                if stripped_line.startswith(sep) and (
                        # Header with no text OR header is followed by space
                        # Both are valid conditions that sep is being used a header
                        len(stripped_line) == len(sep)
                        or stripped_line[len(sep)] == " "
                ):
                    # Ensure we are tracking the header as metadata
                    if name is not None:
                        # Get the current header level
                        current_header_level = sep.count("#")

                        # Pop out headers of lower or same level from the stack
                        while (
                                header_stack
                                and header_stack[-1]["level"] >= current_header_level
                        ):
                            # We have encountered a new header
                            # at the same or higher level
                            popped_header = header_stack.pop()
                            # Clear the metadata for the
                            # popped header in initial_metadata
                            if popped_header["name"] in initial_metadata:
                                initial_metadata.pop(popped_header["name"])

                        # Push the current header to the stack
                        header: HeaderType = {
                            "level": current_header_level,
                            "name": name,
                            "data": stripped_line[len(sep):].strip(),
                        }
                        header_stack.append(header)
                        # Update initial_metadata with the current header
                        initial_metadata[name] = header["data"]

                    # Add the previous line to the lines_with_metadata
                    # only if current_content is not empty
                    if current_content:
                        lines_with_metadata.append(
                            {
                                "content": "\n".join(current_content),
                                "metadata": current_metadata.copy(),
                            }
                        )
                        current_content.clear()

                    break
            else:
                if stripped_line:
                    current_content.append(stripped_line)
                elif current_content:
                    lines_with_metadata.append(
                        {
                            "content": "\n".join(current_content),
                            "metadata": current_metadata.copy(),
                        }
                    )
                    current_content.clear()

            current_metadata = initial_metadata.copy()

        if current_content:
            lines_with_metadata.append(
                {"content": "\n".join(current_content), "metadata": current_metadata}
            )

        # lines_with_metadata has each line with associated header metadata
        # aggregate these into chunks based on common metadata
        if not self.return_each_line:
            return self.aggregate_lines_to_chunks(lines_with_metadata)
        else:
            return [
                Document(page_content=chunk["content"], metadata=chunk["metadata"])
                for chunk in lines_with_metadata
            ]


# should be in newer Python versions (3.10+)
# @dataclass(frozen=True, kw_only=True, slots=True)
@dataclass(frozen=True)
class Tokenizer:
    chunk_overlap: int
    tokens_per_chunk: int
    decode: Callable[[list[int]], str]
    encode: Callable[[str], list[int]]


def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> list[str]:
    """Split incoming text and return chunks using tokenizer."""
    splits: list[str] = []
    input_ids = tokenizer.encode(text)
    start_idx = 0
    cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
    chunk_ids = input_ids[start_idx:cur_idx]
    while start_idx < len(input_ids):
        splits.append(tokenizer.decode(chunk_ids))
        start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
        cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
        chunk_ids = input_ids[start_idx:cur_idx]
    return splits


class TokenTextSplitter(TextSplitter):
    """Splitting text to tokens using model tokenizer."""

    def __init__(

            self,

            encoding_name: str = "gpt2",

            model_name: Optional[str] = None,

            allowed_special: Union[Literal["all"], Set[str]] = set(),

            disallowed_special: Union[Literal["all"], Collection[str]] = "all",

            **kwargs: Any,

    ) -> None:
        """Create a new TextSplitter."""
        super().__init__(**kwargs)
        try:
            import tiktoken
        except ImportError:
            raise ImportError(
                "Could not import tiktoken python package. "
                "This is needed in order to for TokenTextSplitter. "
                "Please install it with `pip install tiktoken`."
            )

        if model_name is not None:
            enc = tiktoken.encoding_for_model(model_name)
        else:
            enc = tiktoken.get_encoding(encoding_name)
        self._tokenizer = enc
        self._allowed_special = allowed_special
        self._disallowed_special = disallowed_special

    def split_text(self, text: str) -> list[str]:
        def _encode(_text: str) -> list[int]:
            return self._tokenizer.encode(
                _text,
                allowed_special=self._allowed_special,
                disallowed_special=self._disallowed_special,
            )

        tokenizer = Tokenizer(
            chunk_overlap=self._chunk_overlap,
            tokens_per_chunk=self._chunk_size,
            decode=self._tokenizer.decode,
            encode=_encode,
        )

        return split_text_on_tokens(text=text, tokenizer=tokenizer)


class Language(str, Enum):
    """Enum of the programming languages."""

    CPP = "cpp"
    GO = "go"
    JAVA = "java"
    JS = "js"
    PHP = "php"
    PROTO = "proto"
    PYTHON = "python"
    RST = "rst"
    RUBY = "ruby"
    RUST = "rust"
    SCALA = "scala"
    SWIFT = "swift"
    MARKDOWN = "markdown"
    LATEX = "latex"
    HTML = "html"
    SOL = "sol"


class RecursiveCharacterTextSplitter(TextSplitter):
    """Splitting text by recursively look at characters.



    Recursively tries to split by different characters to find one

    that works.

    """

    def __init__(

            self,

            separators: Optional[list[str]] = None,

            keep_separator: bool = True,

            **kwargs: Any,

    ) -> None:
        """Create a new TextSplitter."""
        super().__init__(keep_separator=keep_separator, **kwargs)
        self._separators = separators or ["\n\n", "\n", " ", ""]

    def _split_text(self, text: str, separators: list[str]) -> list[str]:
        """Split incoming text and return chunks."""
        final_chunks = []
        # Get appropriate separator to use
        separator = separators[-1]
        new_separators = []
        for i, _s in enumerate(separators):
            if _s == "":
                separator = _s
                break
            if re.search(_s, text):
                separator = _s
                new_separators = separators[i + 1:]
                break

        splits = _split_text_with_regex(text, separator, self._keep_separator)
        # Now go merging things, recursively splitting longer texts.
        _good_splits = []
        _separator = "" if self._keep_separator else separator
        for s in splits:
            if self._length_function(s) < self._chunk_size:
                _good_splits.append(s)
            else:
                if _good_splits:
                    merged_text = self._merge_splits(_good_splits, _separator)
                    final_chunks.extend(merged_text)
                    _good_splits = []
                if not new_separators:
                    final_chunks.append(s)
                else:
                    other_info = self._split_text(s, new_separators)
                    final_chunks.extend(other_info)
        if _good_splits:
            merged_text = self._merge_splits(_good_splits, _separator)
            final_chunks.extend(merged_text)
        return final_chunks

    def split_text(self, text: str) -> list[str]:
        return self._split_text(text, self._separators)

    @classmethod
    def from_language(

            cls, language: Language, **kwargs: Any

    ) -> RecursiveCharacterTextSplitter:
        separators = cls.get_separators_for_language(language)
        return cls(separators=separators, **kwargs)

    @staticmethod
    def get_separators_for_language(language: Language) -> list[str]:
        if language == Language.CPP:
            return [
                # Split along class definitions
                "\nclass ",
                # Split along function definitions
                "\nvoid ",
                "\nint ",
                "\nfloat ",
                "\ndouble ",
                # Split along control flow statements
                "\nif ",
                "\nfor ",
                "\nwhile ",
                "\nswitch ",
                "\ncase ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.GO:
            return [
                # Split along function definitions
                "\nfunc ",
                "\nvar ",
                "\nconst ",
                "\ntype ",
                # Split along control flow statements
                "\nif ",
                "\nfor ",
                "\nswitch ",
                "\ncase ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.JAVA:
            return [
                # Split along class definitions
                "\nclass ",
                # Split along method definitions
                "\npublic ",
                "\nprotected ",
                "\nprivate ",
                "\nstatic ",
                # Split along control flow statements
                "\nif ",
                "\nfor ",
                "\nwhile ",
                "\nswitch ",
                "\ncase ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.JS:
            return [
                # Split along function definitions
                "\nfunction ",
                "\nconst ",
                "\nlet ",
                "\nvar ",
                "\nclass ",
                # Split along control flow statements
                "\nif ",
                "\nfor ",
                "\nwhile ",
                "\nswitch ",
                "\ncase ",
                "\ndefault ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.PHP:
            return [
                # Split along function definitions
                "\nfunction ",
                # Split along class definitions
                "\nclass ",
                # Split along control flow statements
                "\nif ",
                "\nforeach ",
                "\nwhile ",
                "\ndo ",
                "\nswitch ",
                "\ncase ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.PROTO:
            return [
                # Split along message definitions
                "\nmessage ",
                # Split along service definitions
                "\nservice ",
                # Split along enum definitions
                "\nenum ",
                # Split along option definitions
                "\noption ",
                # Split along import statements
                "\nimport ",
                # Split along syntax declarations
                "\nsyntax ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.PYTHON:
            return [
                # First, try to split along class definitions
                "\nclass ",
                "\ndef ",
                "\n\tdef ",
                # Now split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.RST:
            return [
                # Split along section titles
                "\n=+\n",
                "\n-+\n",
                "\n\*+\n",
                # Split along directive markers
                "\n\n.. *\n\n",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.RUBY:
            return [
                # Split along method definitions
                "\ndef ",
                "\nclass ",
                # Split along control flow statements
                "\nif ",
                "\nunless ",
                "\nwhile ",
                "\nfor ",
                "\ndo ",
                "\nbegin ",
                "\nrescue ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.RUST:
            return [
                # Split along function definitions
                "\nfn ",
                "\nconst ",
                "\nlet ",
                # Split along control flow statements
                "\nif ",
                "\nwhile ",
                "\nfor ",
                "\nloop ",
                "\nmatch ",
                "\nconst ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.SCALA:
            return [
                # Split along class definitions
                "\nclass ",
                "\nobject ",
                # Split along method definitions
                "\ndef ",
                "\nval ",
                "\nvar ",
                # Split along control flow statements
                "\nif ",
                "\nfor ",
                "\nwhile ",
                "\nmatch ",
                "\ncase ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.SWIFT:
            return [
                # Split along function definitions
                "\nfunc ",
                # Split along class definitions
                "\nclass ",
                "\nstruct ",
                "\nenum ",
                # Split along control flow statements
                "\nif ",
                "\nfor ",
                "\nwhile ",
                "\ndo ",
                "\nswitch ",
                "\ncase ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.MARKDOWN:
            return [
                # First, try to split along Markdown headings (starting with level 2)
                "\n#{1,6} ",
                # Note the alternative syntax for headings (below) is not handled here
                # Heading level 2
                # ---------------
                # End of code block
                "```\n",
                # Horizontal lines
                "\n\*\*\*+\n",
                "\n---+\n",
                "\n___+\n",
                # Note that this splitter doesn't handle horizontal lines defined
                # by *three or more* of ***, ---, or ___, but this is not handled
                "\n\n",
                "\n",
                " ",
                "",
            ]
        elif language == Language.LATEX:
            return [
                # First, try to split along Latex sections
                "\n\\\chapter{",
                "\n\\\section{",
                "\n\\\subsection{",
                "\n\\\subsubsection{",
                # Now split by environments
                "\n\\\begin{enumerate}",
                "\n\\\begin{itemize}",
                "\n\\\begin{description}",
                "\n\\\begin{list}",
                "\n\\\begin{quote}",
                "\n\\\begin{quotation}",
                "\n\\\begin{verse}",
                "\n\\\begin{verbatim}",
                # Now split by math environments
                "\n\\\begin{align}",
                "$$",
                "$",
                # Now split by the normal type of lines
                " ",
                "",
            ]
        elif language == Language.HTML:
            return [
                # First, try to split along HTML tags
                "<body",
                "<div",
                "<p",
                "<br",
                "<li",
                "<h1",
                "<h2",
                "<h3",
                "<h4",
                "<h5",
                "<h6",
                "<span",
                "<table",
                "<tr",
                "<td",
                "<th",
                "<ul",
                "<ol",
                "<header",
                "<footer",
                "<nav",
                # Head
                "<head",
                "<style",
                "<script",
                "<meta",
                "<title",
                "",
            ]
        elif language == Language.SOL:
            return [
                # Split along compiler information definitions
                "\npragma ",
                "\nusing ",
                # Split along contract definitions
                "\ncontract ",
                "\ninterface ",
                "\nlibrary ",
                # Split along method definitions
                "\nconstructor ",
                "\ntype ",
                "\nfunction ",
                "\nevent ",
                "\nmodifier ",
                "\nerror ",
                "\nstruct ",
                "\nenum ",
                # Split along control flow statements
                "\nif ",
                "\nfor ",
                "\nwhile ",
                "\ndo while ",
                "\nassembly ",
                # Split by the normal type of lines
                "\n\n",
                "\n",
                " ",
                "",
            ]
        else:
            raise ValueError(
                f"Language {language} is not supported! "
                f"Please choose from {list(Language)}"
            )