Spaces:
Runtime error
Runtime error
kimmeoungjun
commited on
Commit
·
277c222
1
Parent(s):
abd383d
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,27 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
|
4 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
from peft import PeftModel, PeftConfig
|
|
|
6 |
|
7 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
8 |
peft_model_id = "kimmeoungjun/qlora-koalpaca"
|
9 |
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
-
model =
|
11 |
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
27 |
-
# print(gen_text)
|
28 |
-
result = gen_text[len(p):]
|
29 |
-
# print(">", result)
|
30 |
-
result = my_split(result, [']', '\n'])[1]
|
31 |
-
# print(">>", result)
|
32 |
-
# print(">>>", result)
|
33 |
-
return result
|
34 |
-
|
35 |
-
def chat(message):
|
36 |
-
history = gr.get_state() or []
|
37 |
-
print(history)
|
38 |
-
response = chat_base(message)
|
39 |
-
history.append((message, response))
|
40 |
-
gr.set_state(history)
|
41 |
-
html = "<div class='chatbot'>"
|
42 |
-
for user_msg, resp_msg in history:
|
43 |
-
html += f"<div class='user_msg'>{user_msg}</div>"
|
44 |
-
html += f"<div class='resp_msg'>{resp_msg}</div>"
|
45 |
-
html += "</div>"
|
46 |
-
return response
|
47 |
-
|
48 |
-
iface = gr.Interface(chat_base, gr.inputs.Textbox(label="물어보세요"), "text", allow_screenshot=False, allow_flagging=False)
|
49 |
-
iface.launch()
|
50 |
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
|
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
7 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
8 |
peft_model_id = "kimmeoungjun/qlora-koalpaca"
|
9 |
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
|
11 |
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
|
14 |
+
def generate(q):
|
15 |
+
inputs = tokenizer(f"### 질문: {q}\n\n### 답변:", return_tensors='pt', return_token_type_ids=False)
|
16 |
+
outputs = model.generate(
|
17 |
+
**{k: v.to(device) for k, v in inputs.items()},
|
18 |
+
max_new_tokens=256,
|
19 |
+
do_sample=True,
|
20 |
+
eos_token_id=2,
|
21 |
+
)
|
22 |
+
result = tokenizer.decode(outputs[0])
|
23 |
+
answer_idx = result.find("### 답변:")
|
24 |
+
answer = result[answer_idx + 7:].strip()
|
25 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
gr.Interface(generate, "text", "text").launch(share=True)
|