dadn commited on
Commit
e7f6431
·
verified ·
1 Parent(s): 7287aa9

Sync App files

Browse files
Files changed (3) hide show
  1. READme.md +11 -0
  2. drug_app.py +5 -5
  3. requirements.txt +3 -1
READme.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: First Attempt
3
+ emoji: 💊
4
+ colorFrom: purple
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 5.4.0
8
+ app_file: drug_app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
drug_app.py CHANGED
@@ -1,15 +1,15 @@
1
  import gradio as gr
2
  import skops.io as sio
3
 
4
- pipe = sio.load("./Model/drug_pipeline.skops", trusted=True)
5
-
6
 
7
  def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
8
  """Predict drugs based on patient features.
9
 
10
  Args:
11
  age (int): Age of patient
12
- sex (str): Sex of patient
13
  blood_pressure (str): Blood pressure level
14
  cholesterol (str): Cholesterol level
15
  na_to_k_ratio (float): Ratio of sodium to potassium in blood
@@ -19,7 +19,7 @@ def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
19
  """
20
  features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
21
  predicted_drug = pipe.predict([features])[0]
22
-
23
  label = f"Predicted Drug: {predicted_drug}"
24
  return label
25
 
@@ -42,7 +42,7 @@ examples = [
42
 
43
  title = "Drug Classification"
44
  description = "Enter the details to correctly identify Drug type?"
45
- article = "This app is a part of the **[Beginner's Guide to CI/CD for Machine Learning](https://www.datacamp.com/tutorial/ci-cd-for-machine-learning)**. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
46
 
47
 
48
  gr.Interface(
 
1
  import gradio as gr
2
  import skops.io as sio
3
 
4
+ trusted_types = sio.get_untrusted_types(file="./Model/drug_pipeline.skops")
5
+ pipe = sio.load("./Model/drug_pipeline.skops", trusted=trusted_types)
6
 
7
  def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
8
  """Predict drugs based on patient features.
9
 
10
  Args:
11
  age (int): Age of patient
12
+ sex (str): Sex of patient
13
  blood_pressure (str): Blood pressure level
14
  cholesterol (str): Cholesterol level
15
  na_to_k_ratio (float): Ratio of sodium to potassium in blood
 
19
  """
20
  features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
21
  predicted_drug = pipe.predict([features])[0]
22
+
23
  label = f"Predicted Drug: {predicted_drug}"
24
  return label
25
 
 
42
 
43
  title = "Drug Classification"
44
  description = "Enter the details to correctly identify Drug type?"
45
+ article = "This app is a part of the Beginner's Guide to CI/CD for Machine Learning. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
46
 
47
 
48
  gr.Interface(
requirements.txt CHANGED
@@ -1,2 +1,4 @@
1
  scikit-learn
2
- skops
 
 
 
1
  scikit-learn
2
+ skops
3
+ black
4
+