Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex | |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding | |
from llama_index.llms.groq import Groq | |
from llama_parse import LlamaParse | |
# API keys | |
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY") | |
groq_key = os.environ.get("GROQ_API_KEY") | |
mxbai_key = os.environ.get("MXBAI_API_KEY") | |
if not (llama_cloud_key and groq_key and mxbai_key): | |
raise ValueError( | |
"API Keys not found! Ensure they are passed to the Docker container." | |
) | |
# models name | |
llm_model_name = "llama-3.1-70b-versatile" | |
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1" | |
# Initialize the parser | |
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown") | |
# Define file extractor with various common extensions | |
file_extractor = { | |
".pdf": parser, | |
".docx": parser, | |
".doc": parser, | |
".txt": parser, | |
".csv": parser, | |
".xlsx": parser, | |
".pptx": parser, | |
".html": parser, | |
".jpg": parser, | |
".jpeg": parser, | |
".png": parser, | |
".webp": parser, | |
".svg": parser, | |
} | |
# Initialize the embedding model | |
embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name) | |
# Initialize the LLM | |
llm = Groq(model="llama-3.1-70b-versatile", api_key=groq_key) | |
# File processing function | |
def load_files(file_path: str): | |
global vector_index | |
if not file_path: | |
return "No file path provided. Please upload a file." | |
valid_extensions = ', '.join(file_extractor.keys()) | |
if not any(file_path.endswith(ext) for ext in file_extractor): | |
return f"The parser can only parse the following file types: {valid_extensions}" | |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() | |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) | |
print(f"Parsing completed for: {file_path}") | |
filename = os.path.basename(file_path) | |
return f"Ready to provide responses based on: {filename}" | |
# Respond function | |
def respond(message, history): | |
try: | |
# Use the preloaded LLM | |
query_engine = vector_index.as_query_engine(streaming=True, llm=llm) | |
streaming_response = query_engine.query(message) | |
partial_text = "" | |
for new_text in streaming_response.response_gen: | |
partial_text += new_text | |
# Yield an empty string to cleanup the message textbox and the updated conversation history | |
yield partial_text | |
except (AttributeError, NameError): | |
print("An error occurred while processing your request.") | |
yield "Please upload the file to begin chat." | |
# Clear function | |
def clear_state(): | |
global vector_index | |
vector_index = None | |
return [None, None, None] | |
# UI Setup | |
with gr.Blocks( | |
theme=gr.themes.Default( | |
primary_hue="green", | |
secondary_hue="blue", | |
font=[gr.themes.GoogleFont("Poppins")], | |
), | |
css="footer {visibility: hidden}", | |
) as demo: | |
gr.Markdown("# DataCamp Doc Q&A π€π") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
file_count="single", type="filepath", label="Upload Document" | |
) | |
with gr.Row(): | |
btn = gr.Button("Submit", variant="primary") | |
clear = gr.Button("Clear") | |
output = gr.Textbox(label="Status") | |
with gr.Column(scale=3): | |
chatbot = gr.ChatInterface( | |
fn=respond, | |
chatbot=gr.Chatbot(height=300), | |
theme="soft", | |
show_progress="full", | |
textbox=gr.Textbox( | |
placeholder="Ask questions about the uploaded document!", | |
container=False, | |
), | |
) | |
# Set up Gradio interactions | |
btn.click(fn=load_files, inputs=file_input, outputs=output) | |
clear.click( | |
fn=clear_state, # Use the clear_state function | |
outputs=[file_input, output], | |
) | |
# Launch the demo | |
if __name__ == "__main__": | |
demo.launch() | |