Spaces:
Sleeping
Sleeping
File size: 25,497 Bytes
5e81a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Toxic Tweets Finetuning\n",
"\n",
"This code is run on colab and finetunes tweets according to the toxic tweets kaggle dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "YQqdqC2IJ6mZ",
"outputId": "0cee2ef3-14ed-4c8b-ad27-4e30d84b1c56"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Requirement already satisfied: transformers in /usr/local/lib/python3.9/dist-packages (4.28.1)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.10.31)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.27.1)\n",
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (0.13.3)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n",
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers) (4.65.0)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (23.1)\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (0.13.4)\n",
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.11.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n",
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.0.12)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (3.4)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (1.26.15)\n"
]
}
],
"source": [
"# !ls\n",
"# !pip install transformers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "EbJOwNb7UTVf",
"outputId": "b9b072d4-9a32-4a9e-899d-ffbd80bb8b6e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')\n",
"# PATH = \"/content/drive/MyDrive/data\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AbuSkKXDKoJ7"
},
"outputs": [],
"source": [
"import torch\n",
"import pandas as pd\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The below defines a custom dataset class ToxicCommentsDataset that inherits from torch.utils.data.Dataset. It takes in the following arguments:\n",
"\n",
"comments: The list of comments to be used as input\n",
"labels: The list of labels corresponding to each comment\n",
"tokenizer: The tokenizer to be used to preprocess the comments\n",
"max_length: The maximum length of the tokenized comments\n",
"The class implements the __len__ and __getitem__ methods required for PyTorch datasets. In the __getitem__ method, each comment is tokenized using the provided tokenizer, truncated to max_length, and padded to max_length using the padding argument. The resulting token IDs, attention mask, and label are returned as a dictionary with keys 'input_ids', 'attention_mask', and 'labels', respectively."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AO-AiK4aNBgh"
},
"outputs": [],
"source": [
"# Create a custom dataset class for the comments and labels\n",
"class ToxicCommentsDataset(torch.utils.data.Dataset):\n",
" def __init__(self, comments, labels, tokenizer, max_length):\n",
" self.comments = comments\n",
" self.labels = labels\n",
" self.tokenizer = tokenizer\n",
" self.max_length = max_length\n",
"\n",
" def __len__(self):\n",
" return len(self.comments)\n",
"\n",
" def __getitem__(self, index):\n",
" comment = str(self.comments[index])\n",
" label = self.labels[index]\n",
"\n",
" encoding = self.tokenizer.encode_plus(\n",
" comment,\n",
" add_special_tokens=True,\n",
" truncation=True,\n",
" max_length=self.max_length,\n",
" return_token_type_ids=False,\n",
" padding='max_length',\n",
" return_attention_mask=True,\n",
" return_tensors='pt'\n",
" )\n",
"\n",
" return {\n",
" 'input_ids': encoding['input_ids'].flatten(),\n",
" 'attention_mask': encoding['attention_mask'].flatten(),\n",
" 'labels': torch.tensor(label, dtype=torch.float32)\n",
" }"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nGmuzGHQXEeX"
},
"source": [
"### loading train and test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JPbtgyxsZKlD"
},
"outputs": [],
"source": [
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
"# training parameters\n",
"batch_size = 8\n",
"num_epochs = 10\n",
"learning_rate = 0.0001\n",
"max_length = 512"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Load training from a CSV file located at /content/drive/MyDrive/data/train.csv into a pandas DataFrame train_texts_df. It then randomly samples 80% of the rows from the DataFrame using sample method and sets them as the training data.\n",
"\n",
"Next, the code sets the training labels by extracting the 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate' columns from train_texts_df and converting them to a list using the values.tolist() method. The comments are also extracted from the 'comment_text' column of train_texts_df and stored in train_comments.\n",
"\n",
"The code then loads the pre-trained DistilBERT model and tokenizer from the Hugging Face Transformers library using the DistilBertForSequenceClassification.from_pretrained and DistilBertTokenizerFast.from_pretrained methods, respectively. The num_labels argument is set to 6 to indicate that the model should be trained for multi-label classification.\n",
"\n",
"Finally, the train_comments and train_labels lists, along with the tokenizer and max_length, are passed to the ToxicCommentsDataset class to create the train_dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "dYhlIni5XA2y",
"outputId": "b0edeae3-8871-4fa7-ebd8-7ec2591faa5e"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_projector.weight', 'vocab_layer_norm.bias', 'vocab_layer_norm.weight', 'vocab_transform.weight', 'vocab_projector.bias', 'vocab_transform.bias']\n",
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'classifier.bias', 'classifier.weight', 'pre_classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"train_texts_df = pd.read_csv('/content/drive/MyDrive/data/train.csv')\n",
"\n",
"train_texts_df = train_texts_df.sample(frac=0.8, random_state=42)\n",
"\n",
"# set the training labels:\n",
"train_labels = train_texts_df[['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].values.tolist()\n",
"train_comments = train_texts_df['comment_text'].tolist()\n",
"\n",
"# Load the pre-trained DistilBERT model and tokenizer\n",
"model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=6)\n",
"tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')\n",
"\n",
"train_dataset = ToxicCommentsDataset(train_comments, train_labels, tokenizer, max_length=512)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Then you loads the test data from two CSV files located at /content/drive/MyDrive/data/test_labels.csv and /content/drive/MyDrive/data/test.csv into pandas DataFrames test_labels and test_data, respectively.\n",
"\n",
"Next, the code filters out any rows in test_labels that contain -1 using the any method and creates a boolean mask for those rows using the ~ operator. The filtered test_labels DataFrame is created by applying the mask using the loc method.\n",
"\n",
"The code then modifies test_data to only include rows where the id column exists in test_labels_filtered. This is done using the isin method on the id column of test_data.\n",
"\n",
"After that, the code randomly samples 50% of the rows from test_data_filtered and test_labels_filtered using the sample method with frac=0.5 and random_state=33.\n",
"\n",
"Finally, the toxic, severe_toxic, obscene, threat, insult, and identity_hate columns are extracted from test_labels_filtered and converted to a list of lists using the values.tolist() method. The comments are extracted from the comment_text column of test_data_filtered and stored in test_comments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "iqnX6265NGW2",
"outputId": "dcbda026-1793-4323-e000-6122a8aa615b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" id toxic severe_toxic obscene threat insult \\\n",
"128700 d718f29ed43fa5e7 1 0 0 0 0 \n",
"23627 27661a70fa723a71 0 0 0 0 0 \n",
"7664 0cd773ed62c92549 0 0 0 0 0 \n",
"110519 b854eec6e725eb7b 0 0 0 0 0 \n",
"66792 6f3502e118fb6d0e 0 0 0 0 0 \n",
"\n",
" identity_hate \n",
"128700 0 \n",
"23627 0 \n",
"7664 0 \n",
"110519 0 \n",
"66792 0 \n",
" id comment_text\n",
"128700 d718f29ed43fa5e7 == I Hope You Die == \\n\\n :)\n",
"23627 27661a70fa723a71 *Support as long as Cheyenne (Jason Derulo son...\n",
"7664 0cd773ed62c92549 :::Consensus has not yet been established.\n",
"110519 b854eec6e725eb7b \" \\n :Heh, this is one of those weird things w...\n",
"66792 6f3502e118fb6d0e ::I'm concerned about some of the above. For...\n"
]
}
],
"source": [
"test_labels = pd.read_csv('/content/drive/MyDrive/data/test_labels.csv')\n",
"test_data = pd.read_csv('/content/drive/MyDrive/data/test.csv')\n",
"\n",
"# Filter out rows with -1 in test_labels\n",
"mask = ~(test_labels == -1).any(axis=1)\n",
"test_labels_filtered = test_labels.loc[mask]\n",
"\n",
"# modify test_data to only include data in which id also exists in test_labels_filtered\n",
"test_data_filtered = test_data[test_data['id'].isin(test_labels_filtered['id'])]\n",
"\n",
"\n",
"# randomly sample 10% of the data\n",
"test_data_filtered = test_data_filtered.sample(frac=0.5, random_state=33)\n",
"test_labels_filtered = test_labels_filtered.sample(frac=0.5, random_state=33)\n",
"\n",
"print(test_labels_filtered.head())\n",
"print(test_data_filtered.head())\n",
"\n",
"# set the test labels:\n",
"test_labels = test_labels_filtered[['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].values.tolist()\n",
"test_comments = test_data_filtered['comment_text'].tolist()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7YzsITMNXG4i"
},
"source": [
"### Setting the model up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CzPtlnoiLmWo"
},
"outputs": [],
"source": [
"# Define the optimizer and the loss function\n",
"optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)\n",
"loss_fn = torch.nn.BCEWithLogitsLoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JYhXkBWjpSvu"
},
"outputs": [],
"source": [
"from torch.cuda.amp import autocast\n",
"import matplotlib.pyplot as plt\n",
"from tqdm import tqdm"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This code trains a toxicity classification model using a custom dataset class called ToxicCommentsDataset and the pre-trained DistilBERT model and tokenizer. The model is trained on a training set and the training process is displayed using a plot of the loss function. The trained model is saved to disk. The code also prepares a filtered test set for evaluation of the trained model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Train the model\n",
"train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
"\n",
"# set device again just in case\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"model.to(device)\n",
"\n",
"# losses to plot\n",
"train_losses = []\n",
"\n",
"for epoch in range(num_epochs):\n",
" running_loss = 0.0\n",
" stop = int(0.4*len(train_loader))\n",
" for i, batch in enumerate(tqdm(train_loader)):\n",
" # early stoppping\n",
" if i == stop: break\n",
" # move tensors to gpu\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" labels = batch['labels'].to(device)\n",
"\n",
" # zero grads\n",
" optimizer.zero_grad()\n",
"\n",
" # use autocast for mixed precision\n",
" with autocast():\n",
" outputs = model(input_ids.to(device), attention_mask=attention_mask.to(device), labels=labels.to(device))\n",
" loss = loss_fn(outputs.logits, labels)\n",
"\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" running_loss += loss.item()\n",
" train_losses.append((i, loss.item()))\n",
"\n",
" if (i+1) % (stop//20) == 0:\n",
" print(f'batch {i+1}/{len(train_loader)}, loss: {loss.item():.4f}, running loss: {running_loss:.4f}')\n",
" plt.title(f\"epoch:{epoch}, iter:{i}\")\n",
" plt.plot(*zip(*train_losses))\n",
" plt.ylabel(\"Loss\")\n",
" plt.xlabel(\"iter\")\n",
" plt.show()\n",
" # plt.savefig(f\"/content/drive/MyDrive/data/training_loss_dinner_{epoch}.png\")\n",
"\n",
" torch.save(model.state_dict(), f\"/content/drive/MyDrive/data/toxicity_classifier_dinner_epoch_{epoch+1}.pt\")\n",
" \n",
" print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}, Running Loss {running_loss:.4f}')\n",
"\n",
"# Save the trained model\n",
"model.save_pretrained('/content/drive/MyDrive/data/toxicity_classifier_dinner')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "grWMy6_zOBrC"
},
"source": [
"## test Model eval"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lSYV8E76O1hY"
},
"outputs": [],
"source": [
"print(len(test_labels), len(test_comments))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"In this code block, the saved pretrained model is loaded using the DistilBertForSequenceClassification class from the transformers library. The DistilBertTokenizerFast tokenizer is set up to tokenize the input data. A ToxicCommentsDataset is created using the test comments, test labels, tokenizer, and maximum sequence length. A DataLoader is created using the test dataset and batch size. The model is set to evaluation mode. Lists are created to store the predicted probabilities and true labels for each batch of data. The code iterates over the batches in the test data loader, moving the tensors to the device and disabling gradient computation. The forward pass is performed on the model, and the predicted probabilities are extracted using the sigmoid function. The probabilities and true labels are then appended to the respective lists. A progress update is printed every 20 batches."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BP_G1GB0y9ae"
},
"outputs": [],
"source": [
"# Load the saved pretrained model\n",
"model = DistilBertForSequenceClassification.from_pretrained('/content/drive/MyDrive/data/toxicity_classifier')\n",
"\n",
"# Set the tokenizer\n",
"tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')\n",
"\n",
"# Create test dataset\n",
"test_dataset = ToxicCommentsDataset(test_comments, test_labels, tokenizer, max_length)\n",
"\n",
"# Create test data loader\n",
"test_loader = DataLoader(test_dataset, batch_size=batch_size)\n",
"\n",
"# Set model to eval mode\n",
"model.eval()\n",
"\n",
"# Create lists to store predictions and true labels\n",
"preds = []\n",
"true_labels = []\n",
"\n",
"model.to(device)\n",
"\n",
"# Iterate over batches in test data loader\n",
"for i, batch in enumerate(tqdm(test_loader)):\n",
" if not (i % 2 == 0):\n",
" continue\n",
"\n",
" # Move tensors to device\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" labels = batch['labels'].to(device)\n",
"\n",
" # Disable gradient computation\n",
" with torch.no_grad():\n",
" # Forward pass\n",
" outputs = model(input_ids, attention_mask=attention_mask)\n",
"\n",
" # Get predicted probabilities\n",
" probs = torch.sigmoid(outputs.logits)\n",
"\n",
" # Append probabilities and true labels to lists\n",
" preds += probs.cpu().numpy().tolist()\n",
" true_labels += labels.cpu().numpy().tolist()\n",
"\n",
" if i % 20 == 0:\n",
" print(f\"Processed {i}/{len(test_loader)} batches\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This code snippet calculates several evaluation metrics for a toxicity classifier model trained on a dataset of toxic and non-toxic comments. The evaluation metrics calculated are accuracy, precision, recall, and F1 score.\n",
"\n",
"First, the predicted probabilities and true labels are flattened into 1D arrays using list comprehensions. Then, a binary label is assigned to each prediction based on a given threshold. If the predicted probability is greater than or equal to the threshold, the label is set to 1, otherwise, it is set to 0.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HPP5iHgd57ag"
},
"outputs": [],
"source": [
"# !pip install scikit-learn\n",
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score\n",
"\n",
"print(preds)\n",
"\n",
"# Calculate metrics\n",
"# Flatten the predictions and true labels to 1D arrays\n",
"flat_preds = [p for sublist in preds for p in sublist]\n",
"flat_true_labels = [l for sublist in true_labels for l in sublist]\n",
"print(len(flat_true_labels), len(flat_preds))\n",
"\n",
"# Convert predicted probabilities to binary labels based on threshold\n",
"threshold = 0.66666 # Thresholds for class 0 and class 1\n",
"preds_binary = []\n",
"for id in preds:\n",
" for prob in id:\n",
" if prob >= threshold: preds_binary.append(1)\n",
" else: preds_binary.append(0)\n",
"\n",
"print(preds_binary)\n",
"\n",
"# Calculate metrics for binary predictions\n",
"accuracy = accuracy_score(flat_true_labels, preds_binary)\n",
"precision = precision_score(flat_true_labels, preds_binary)\n",
"recall = recall_score(flat_true_labels, preds_binary)\n",
"f1 = f1_score(flat_true_labels, preds_binary)\n",
"\n",
"print('Accuracy: ', accuracy)\n",
"print('Precision: ', precision)\n",
"print('Recall: ', recall)\n",
"print('F1: ', f1)\n",
"\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|