Spaces:
Sleeping
Sleeping
Kingston Yip
commited on
Commit
Β·
f3c89dc
1
Parent(s):
743c8db
removed cache
Browse files
app.py
CHANGED
@@ -10,8 +10,13 @@ def predict_cyberbullying_probability(sentence, tokenizer, model):
|
|
10 |
# Preprocess the input sentence
|
11 |
inputs = tokenizer(sentence, padding='max_length', return_token_type_ids=False, return_attention_mask=True, truncation=True, max_length=512, return_tensors='pt')
|
12 |
|
13 |
-
|
|
|
|
|
|
|
14 |
attention_mask = inputs['attention_mask'].flatten()
|
|
|
|
|
15 |
inputs = inputs['input_ids'].flatten()
|
16 |
# print("\n\ninputs\n\n", inputs)
|
17 |
# Disable gradient computation
|
@@ -19,7 +24,8 @@ def predict_cyberbullying_probability(sentence, tokenizer, model):
|
|
19 |
# Forward pass
|
20 |
outputs = model(inputs, attention_mask=attention_mask)
|
21 |
|
22 |
-
probs = torch.sigmoid(outputs.logits.flatten())
|
|
|
23 |
|
24 |
|
25 |
res = probs.numpy().tolist()
|
@@ -73,8 +79,6 @@ st.image(image, use_column_width=True)
|
|
73 |
|
74 |
labels = ['comment', 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
75 |
|
76 |
-
# toxic_list = st.cache(comments.comments)
|
77 |
-
|
78 |
|
79 |
with st.form("my_form"):
|
80 |
#select model
|
@@ -85,9 +89,10 @@ with st.form("my_form"):
|
|
85 |
tweet = st.text_area(label="Enter Text:",value=default)
|
86 |
submitted = st.form_submit_button("Analyze textbox")
|
87 |
random = st.form_submit_button("Analyze a random πππ tweet")
|
88 |
-
|
89 |
if random:
|
90 |
tweet = comments.comments[randint(0, 354)]
|
|
|
91 |
|
92 |
|
93 |
df = perform_cyberbullying_analysis(tweet)
|
|
|
10 |
# Preprocess the input sentence
|
11 |
inputs = tokenizer(sentence, padding='max_length', return_token_type_ids=False, return_attention_mask=True, truncation=True, max_length=512, return_tensors='pt')
|
12 |
|
13 |
+
print("==========")
|
14 |
+
print(inputs)
|
15 |
+
print("==========")
|
16 |
+
|
17 |
attention_mask = inputs['attention_mask'].flatten()
|
18 |
+
print("==========")
|
19 |
+
print(attention_mask)
|
20 |
inputs = inputs['input_ids'].flatten()
|
21 |
# print("\n\ninputs\n\n", inputs)
|
22 |
# Disable gradient computation
|
|
|
24 |
# Forward pass
|
25 |
outputs = model(inputs, attention_mask=attention_mask)
|
26 |
|
27 |
+
probs = torch.sigmoid(outputs.logits.unsqueeze(1).flatten())
|
28 |
+
|
29 |
|
30 |
|
31 |
res = probs.numpy().tolist()
|
|
|
79 |
|
80 |
labels = ['comment', 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
81 |
|
|
|
|
|
82 |
|
83 |
with st.form("my_form"):
|
84 |
#select model
|
|
|
89 |
tweet = st.text_area(label="Enter Text:",value=default)
|
90 |
submitted = st.form_submit_button("Analyze textbox")
|
91 |
random = st.form_submit_button("Analyze a random πππ tweet")
|
92 |
+
|
93 |
if random:
|
94 |
tweet = comments.comments[randint(0, 354)]
|
95 |
+
st.write(tweet)
|
96 |
|
97 |
|
98 |
df = perform_cyberbullying_analysis(tweet)
|