Duplicate from kadirnar/yolox
Browse filesCo-authored-by: Kadir Nar <[email protected]>
- .gitattributes +34 -0
- README.md +16 -0
- app.py +75 -0
- configs/__init__.py +0 -0
- configs/yolov3.py +33 -0
- configs/yolox_l.py +15 -0
- configs/yolox_m.py +15 -0
- configs/yolox_nano.py +48 -0
- configs/yolox_s.py +15 -0
- configs/yolox_tiny.py +20 -0
- configs/yolox_x.py +15 -0
- requirements.txt +1 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: YOLOX is a high-performance anchor-free YOLO.
|
3 |
+
emoji: 🌖
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.15.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
tags:
|
12 |
+
- making-demos
|
13 |
+
duplicated_from: kadirnar/yolox
|
14 |
+
---
|
15 |
+
|
16 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
os.system("pip -qq install yoloxdetect==0.0.7")
|
4 |
+
import torch
|
5 |
+
from yoloxdetect import YoloxDetector
|
6 |
+
|
7 |
+
# Images
|
8 |
+
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
9 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
10 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Megvii-BaseDetection/YOLOX/main/assets/dog.jpg', 'dog.jpg')
|
11 |
+
|
12 |
+
def yolox_inference(
|
13 |
+
image_path: gr.inputs.Image = None,
|
14 |
+
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
|
15 |
+
config_path: gr.inputs.Textbox = 'configs.yolox_s',
|
16 |
+
image_size: gr.inputs.Slider = 640
|
17 |
+
):
|
18 |
+
"""
|
19 |
+
YOLOX inference function
|
20 |
+
Args:
|
21 |
+
image: Input image
|
22 |
+
model_path: Path to the model
|
23 |
+
config_path: Path to the config file
|
24 |
+
image_size: Image size
|
25 |
+
Returns:
|
26 |
+
Rendered image
|
27 |
+
"""
|
28 |
+
|
29 |
+
model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True)
|
30 |
+
pred = model.predict(image_path=image_path, image_size=image_size)
|
31 |
+
return pred
|
32 |
+
|
33 |
+
|
34 |
+
inputs = [
|
35 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
36 |
+
gr.inputs.Dropdown(
|
37 |
+
label="Model Path",
|
38 |
+
choices=[
|
39 |
+
"kadirnar/yolox_s-v0.1.1",
|
40 |
+
"kadirnar/yolox_m-v0.1.1",
|
41 |
+
"kadirnar/yolox_tiny-v0.1.1",
|
42 |
+
],
|
43 |
+
default="kadirnar/yolox_s-v0.1.1",
|
44 |
+
),
|
45 |
+
gr.inputs.Dropdown(
|
46 |
+
label="Config Path",
|
47 |
+
choices=[
|
48 |
+
"configs.yolox_s",
|
49 |
+
"configs.yolox_m",
|
50 |
+
"configs.yolox_tiny",
|
51 |
+
],
|
52 |
+
default="configs.yolox_s",
|
53 |
+
),
|
54 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
55 |
+
]
|
56 |
+
|
57 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
58 |
+
title = "YOLOX is a high-performance anchor-free YOLO."
|
59 |
+
|
60 |
+
examples = [
|
61 |
+
["small-vehicles1.jpeg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640],
|
62 |
+
["zidane.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640],
|
63 |
+
["dog.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640],
|
64 |
+
]
|
65 |
+
|
66 |
+
demo_app = gr.Interface(
|
67 |
+
fn=yolox_inference,
|
68 |
+
inputs=inputs,
|
69 |
+
outputs=outputs,
|
70 |
+
title=title,
|
71 |
+
examples=examples,
|
72 |
+
cache_examples=True,
|
73 |
+
theme='huggingface',
|
74 |
+
)
|
75 |
+
demo_app.launch(debug=True, enable_queue=True)
|
configs/__init__.py
ADDED
File without changes
|
configs/yolov3.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from yolox.exp import Exp as MyExp
|
10 |
+
|
11 |
+
|
12 |
+
class Exp(MyExp):
|
13 |
+
def __init__(self):
|
14 |
+
super(Exp, self).__init__()
|
15 |
+
self.depth = 1.0
|
16 |
+
self.width = 1.0
|
17 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
18 |
+
|
19 |
+
def get_model(self, sublinear=False):
|
20 |
+
def init_yolo(M):
|
21 |
+
for m in M.modules():
|
22 |
+
if isinstance(m, nn.BatchNorm2d):
|
23 |
+
m.eps = 1e-3
|
24 |
+
m.momentum = 0.03
|
25 |
+
if "model" not in self.__dict__:
|
26 |
+
from yolox.models import YOLOX, YOLOFPN, YOLOXHead
|
27 |
+
backbone = YOLOFPN()
|
28 |
+
head = YOLOXHead(self.num_classes, self.width, in_channels=[128, 256, 512], act="lrelu")
|
29 |
+
self.model = YOLOX(backbone, head)
|
30 |
+
self.model.apply(init_yolo)
|
31 |
+
self.model.head.initialize_biases(1e-2)
|
32 |
+
|
33 |
+
return self.model
|
configs/yolox_l.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
from yolox.exp import Exp as MyExp
|
8 |
+
|
9 |
+
|
10 |
+
class Exp(MyExp):
|
11 |
+
def __init__(self):
|
12 |
+
super(Exp, self).__init__()
|
13 |
+
self.depth = 1.0
|
14 |
+
self.width = 1.0
|
15 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
configs/yolox_m.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
from yolox.exp import Exp as MyExp
|
8 |
+
|
9 |
+
|
10 |
+
class Exp(MyExp):
|
11 |
+
def __init__(self):
|
12 |
+
super(Exp, self).__init__()
|
13 |
+
self.depth = 0.67
|
14 |
+
self.width = 0.75
|
15 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
configs/yolox_nano.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from yolox.exp import Exp as MyExp
|
10 |
+
|
11 |
+
|
12 |
+
class Exp(MyExp):
|
13 |
+
def __init__(self):
|
14 |
+
super(Exp, self).__init__()
|
15 |
+
self.depth = 0.33
|
16 |
+
self.width = 0.25
|
17 |
+
self.input_size = (416, 416)
|
18 |
+
self.random_size = (10, 20)
|
19 |
+
self.mosaic_scale = (0.5, 1.5)
|
20 |
+
self.test_size = (416, 416)
|
21 |
+
self.mosaic_prob = 0.5
|
22 |
+
self.enable_mixup = False
|
23 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
24 |
+
|
25 |
+
def get_model(self, sublinear=False):
|
26 |
+
|
27 |
+
def init_yolo(M):
|
28 |
+
for m in M.modules():
|
29 |
+
if isinstance(m, nn.BatchNorm2d):
|
30 |
+
m.eps = 1e-3
|
31 |
+
m.momentum = 0.03
|
32 |
+
if "model" not in self.__dict__:
|
33 |
+
from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead
|
34 |
+
in_channels = [256, 512, 1024]
|
35 |
+
# NANO model use depthwise = True, which is main difference.
|
36 |
+
backbone = YOLOPAFPN(
|
37 |
+
self.depth, self.width, in_channels=in_channels,
|
38 |
+
act=self.act, depthwise=True,
|
39 |
+
)
|
40 |
+
head = YOLOXHead(
|
41 |
+
self.num_classes, self.width, in_channels=in_channels,
|
42 |
+
act=self.act, depthwise=True
|
43 |
+
)
|
44 |
+
self.model = YOLOX(backbone, head)
|
45 |
+
|
46 |
+
self.model.apply(init_yolo)
|
47 |
+
self.model.head.initialize_biases(1e-2)
|
48 |
+
return self.model
|
configs/yolox_s.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
from yolox.exp import Exp as MyExp
|
8 |
+
|
9 |
+
|
10 |
+
class Exp(MyExp):
|
11 |
+
def __init__(self):
|
12 |
+
super(Exp, self).__init__()
|
13 |
+
self.depth = 0.33
|
14 |
+
self.width = 0.50
|
15 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
configs/yolox_tiny.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
from yolox.exp import Exp as MyExp
|
8 |
+
|
9 |
+
|
10 |
+
class Exp(MyExp):
|
11 |
+
def __init__(self):
|
12 |
+
super(Exp, self).__init__()
|
13 |
+
self.depth = 0.33
|
14 |
+
self.width = 0.375
|
15 |
+
self.input_size = (416, 416)
|
16 |
+
self.mosaic_scale = (0.5, 1.5)
|
17 |
+
self.random_size = (10, 20)
|
18 |
+
self.test_size = (416, 416)
|
19 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
20 |
+
self.enable_mixup = False
|
configs/yolox_x.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
from yolox.exp import Exp as MyExp
|
8 |
+
|
9 |
+
|
10 |
+
class Exp(MyExp):
|
11 |
+
def __init__(self):
|
12 |
+
super(Exp, self).__init__()
|
13 |
+
self.depth = 1.33
|
14 |
+
self.width = 1.25
|
15 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
torch
|