File size: 6,521 Bytes
a61302b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import ast
import os
import pickle
import random
from datetime import datetime, timedelta

import gradio as gr
import pandas as pd
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage, SystemMessage
from pytrends.request import TrendReq

from mlxtend.preprocessing import TransactionEncoder


def convert_keywords_to_list(keywords_str):
    try:
        return ast.literal_eval(keywords_str)
    except (SyntaxError, ValueError):
        return []


def convert_scores_to_list(scores_float):
    try:
        return ast.literal_eval(scores_float)
    except (SyntaxError, ValueError):
        return []

video_df = pd.read_csv('video_df_complete.csv')
video_df['keywords'] = video_df['keywords'].apply(convert_keywords_to_list)
video_df['trend_scores'] = video_df['trend_scores'].apply(convert_scores_to_list)

video_df['total_score'] = video_df['trend_scores'].apply(lambda x: sum(x) / len(x) if len(x) > 0 else 0)

transactions = []
for index, row in video_df.iterrows():
    transactions.append(row['keywords'])

te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)

merged_df = pd.concat([df, video_df['total_score'], video_df['engagement_rate']], axis=1)

rules = pd.read_csv('association_rules.csv')
rules['antecedents'] = rules['antecedents'].apply(lambda x: list(eval(x)))
rules['consequents'] = rules['consequents'].apply(lambda x: list(eval(x)))

model_filename = os.path.join('regression_model_final.pkl')

with open(model_filename, 'rb') as file:
    model = pickle.load(file)

llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro", convert_system_message_to_human=True)

def custom_predict(keywords, total_score):
    """

    Custom prediction function using the trained linear regression model.



    Args:

        keywords: A list of keywords.

        total_score: The total trend score.



    Returns:

        The predicted engagement rate.

    """
    new_data = pd.DataFrame([{col: 0 for col in merged_df.columns}])

    for keyword in keywords:
        if keyword in new_data.columns:
            new_data.at[0, keyword] = 1

    new_data.at[0, 'total_score'] = total_score

    new_data = new_data.drop('engagement_rate', axis=1)

    prediction = model.predict(new_data)

    return prediction[0][0]


def generate_keyword_scores(keywords):
    scaled_rate = min(100, 4.5 * 10)

    return [
        round(random.uniform(scaled_rate * 0.7, min(100, scaled_rate * 1.2)), 2)
        for _ in keywords
    ]


def get_google_trends_score(keywords, end_date, days_back=7):
    """

    Mengambil skor tren Google untuk kata kunci tertentu selama periode waktu tertentu.



    Parameters:

    keywords (list): Daftar kata kunci yang ingin dianalisis.

    end_date (datetime): Tanggal akhir untuk data tren.

    days_back (int): Jumlah hari ke belakang dari end_date untuk menentukan rentang waktu (default: 7 hari).



    Returns:

    pd.DataFrame: DataFrame berisi data tren per kata kunci selama periode waktu yang ditentukan.

    """
    try:
      if not keywords:
          raise ValueError("Daftar kata kunci tidak boleh kosong.")

      pytrends = TrendReq()
      start_date = end_date - timedelta(days=days_back)
      timeframe = f"{start_date.strftime('%Y-%m-%d')} {end_date.strftime('%Y-%m-%d')}"

      pytrends.build_payload(keywords, timeframe=timeframe, geo='ID', gprop='youtube')
      trends_df = pytrends.interest_over_time()

      if 'isPartial' in trends_df.columns:
          trends_df = trends_df.drop(columns=['isPartial'])

      return trends_df
    except Exception as e:
      return pd.DataFrame(generate_keyword_scores(keywords))


def generate_title(keyword, category):
    if category != 'Gaming':
        return "Category belum supported."

    recommendation = recommend_keyword(keyword)

    if not recommendation:
        return "No recommendations found."
    else:
        result = llm(
            [
                SystemMessage(
                    content=f"Kamu adalah seorang penulis judul video youtube"
                            f"Kamu akan diberikan beberapa buah keyword yang wajib digunakan untuk judul"
                            f"Buat judul yang semenarik mungkin untuk memberikan viewer rasa suka"
                            f"Cukup keluarkan satu judul saja dalam satu kalimat"
                            f"Jangan gunnakan formatting seperti '\n' atau hal lainnya. Gunakan saja raw string"
                            f"Boleh pake emoji"
                ),
                HumanMessage(
                    content=f"keyword yang digunakan adalah sebagai berikut: {recommendation}"
                            f"Total jumlah keyword adalah: {len(recommendation)}"
                            f"Video memiliki kategori: {category}"
                )
            ]
        )

        return result.content


def recommend_keyword(keyword):
    keyword_rules = rules[
        rules['antecedents'].astype(str).str.contains(keyword) | rules['consequents'].astype(str).str.contains(keyword)]

    top_5_rules = keyword_rules.sort_values(by='lift', ascending=False).head(5)

    recommendation = []
    engages = []

    for idx, row in top_5_rules.iterrows():
        antecedents = list(row['antecedents'])[0]
        consequents = list(row['consequents'])

        recommendation.append([keyword] + consequents)

    if not recommendation:
        return []

    for rec in recommendation:
        trends_df = get_google_trends_score(rec, datetime.now())

        batch_scores = [
            round(trends_df[keyword].mean(), 2) if keyword in trends_df.columns else 0
            for keyword in keywords
        ]

        batch_scores = sum(batch_scores) / len(batch_scores)

        engagement_rate = custom_predict(rec, batch_scores)

        engages.append(engagement_rate)

    return recommendation[engages.index(max(engages))]


distinct_categories = video_df['catergory'].unique()

iface = gr.Interface(
    fn=generate_title,
    inputs=[
        gr.Textbox(label="Enter a keyword"),
        gr.Dropdown(label="Select a category", choices=list(distinct_categories))
    ],
    outputs=gr.Textbox(label="Recommendations"),
    title="Title Recommendation",
    description="Do'akan saya langgeng sm Ei"
)

iface.launch()