KARTHIK REDDY
commited on
Commit
·
d03075d
1
Parent(s):
ed8abd5
lets do this
Browse files- Dockerfile +16 -0
- app.py +372 -0
- requirements.txt +10 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
WORKDIR /code
|
7 |
+
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
+
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
ENV BOKEH_ALLOW_WS_ORIGIN=kkr5155-distributedswarmintelligence.hf.space
|
15 |
+
|
16 |
+
CMD ["panel", "serve", "/code/app.py", "--address", "0.0.0.0","--port", "7860", "--allow-websocket-origin=kkr5155-distributedswarmintelligence.hf.space"]
|
app.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
import threading
|
4 |
+
import panel as pn
|
5 |
+
pn.extension(template='bootstrap')
|
6 |
+
import holoviews as hv
|
7 |
+
import time
|
8 |
+
import pandas as pd
|
9 |
+
from holoviews.streams import Stream
|
10 |
+
hv.extension('bokeh', logo=False)
|
11 |
+
|
12 |
+
# Particle class: Each particle will be an object of this class with all the properties defined in __init__() method
|
13 |
+
class Particle():
|
14 |
+
|
15 |
+
# Method to initialize particle properties
|
16 |
+
def __init__(self, initial):
|
17 |
+
self.position = []
|
18 |
+
self.velocity = []
|
19 |
+
self.initial = initial
|
20 |
+
self.best_position = []
|
21 |
+
self.best_error = float('inf') # Initialize best_error with infinity
|
22 |
+
self.error = float('inf') # Initialize error with infinity
|
23 |
+
self.num_dimensions = 2
|
24 |
+
for i in range(0, self.num_dimensions):
|
25 |
+
self.velocity.append(random.uniform(-1, 1))
|
26 |
+
self.position.append(initial[i])
|
27 |
+
|
28 |
+
# Method to update velocity of a particle object
|
29 |
+
def update_velocity(self, global_best_position, max_iter, iter_count):
|
30 |
+
c1_start = 2.5
|
31 |
+
c1_end = 0.5
|
32 |
+
c2_start = 0.5
|
33 |
+
c2_end = 2.5
|
34 |
+
w = 0.7298
|
35 |
+
|
36 |
+
c1 = c1_start - (c1_start - c1_end) * (iter_count / max_iter)
|
37 |
+
c2 = c2_start + (c2_end - c2_start) * (iter_count / max_iter)
|
38 |
+
|
39 |
+
for i in range(0, self.num_dimensions):
|
40 |
+
r1 = random.random()
|
41 |
+
r2 = random.random()
|
42 |
+
|
43 |
+
cog_vel = c1 * r1 * (self.best_position[i] - self.position[i])
|
44 |
+
social_vel = c2 * r2 * (global_best_position[i] - self.position[i])
|
45 |
+
self.velocity[i] = w * self.velocity[i] + cog_vel + social_vel
|
46 |
+
|
47 |
+
# Method to update position of a particle object
|
48 |
+
def update_position(self, bounds):
|
49 |
+
for i in range(0, self.num_dimensions):
|
50 |
+
self.position[i] = self.position[i] + self.velocity[i]
|
51 |
+
|
52 |
+
if self.position[i] > bounds[i][1]:
|
53 |
+
self.position[i] = bounds[i][1]
|
54 |
+
|
55 |
+
if self.position[i] < bounds[i][0]:
|
56 |
+
self.position[i] = bounds[i][0]
|
57 |
+
|
58 |
+
# Method to evaluate fitness of a particle
|
59 |
+
def evaluate_fitness(self, number, target, function):
|
60 |
+
if number == 1:
|
61 |
+
self.error = fitness_function(self.position, target)
|
62 |
+
else:
|
63 |
+
self.error = cost_function(self.position, function)
|
64 |
+
|
65 |
+
if self.error < self.best_error:
|
66 |
+
self.best_position = self.position[:] # Create a copy of the position list
|
67 |
+
self.best_error = self.error
|
68 |
+
|
69 |
+
# Getter method to return the present error of a particle
|
70 |
+
def get_error(self):
|
71 |
+
return self.error
|
72 |
+
|
73 |
+
# Getter method to return the best position of a particle
|
74 |
+
def get_best_pos(self):
|
75 |
+
return self.best_position[:] # Return a copy of the best position list
|
76 |
+
|
77 |
+
# Getter method to return the best error of a particle
|
78 |
+
def get_best_error(self):
|
79 |
+
return self.best_error
|
80 |
+
|
81 |
+
# Getter method to return the best position of a particle
|
82 |
+
def get_pos(self):
|
83 |
+
return self.position[:] # Return a copy of the position list
|
84 |
+
|
85 |
+
# Getter method to return the velocity of a particle
|
86 |
+
def get_velocity(self):
|
87 |
+
return self.velocity[:] # Return a copy of the velocity list
|
88 |
+
|
89 |
+
# Function to calculate the euclidean distance from a particle to target
|
90 |
+
def fitness_function(particle_position, target):
|
91 |
+
x_pos, y_pos = float(target[0]), float(target[1])
|
92 |
+
return (x_pos - particle_position[0])**2 + (y_pos - particle_position[1])**2
|
93 |
+
|
94 |
+
# Function to calculate the value of the mathematical function at the position of a particle
|
95 |
+
import sympy as sp
|
96 |
+
|
97 |
+
def cost_function(particle_position, function_str):
|
98 |
+
x, y = sp.symbols('x y')
|
99 |
+
function = sp.sympify(function_str)
|
100 |
+
return function.subs({x: particle_position[0], y: particle_position[1]})
|
101 |
+
|
102 |
+
# Interactive Class: to create a swarm of particles and an interactive PSO
|
103 |
+
class Interactive_PSO():
|
104 |
+
|
105 |
+
# Method to initialize properties of an Interactive PSO
|
106 |
+
def __init__(self):
|
107 |
+
self._running = False
|
108 |
+
self.max_iter = 500 # Set the desired maximum number of iterations
|
109 |
+
self.num_particles = 25
|
110 |
+
self.initial = [5, 5]
|
111 |
+
self.bounds = [(-500, 500), (-500, 500)]
|
112 |
+
self.x_axis = []
|
113 |
+
self.y_axis = []
|
114 |
+
self.target = [5] * 2
|
115 |
+
self.global_best_error = float('inf') # Initialize global_best_error with infinity
|
116 |
+
self.update_particles_position_lists_with_random_values()
|
117 |
+
self.global_best_position = [0, 0]
|
118 |
+
|
119 |
+
# Method to initialize swarm to find the target in a given search space
|
120 |
+
# Method to initialize swarm to find the target in a given search space
|
121 |
+
def swarm_initialization(self, number, max_iter):
|
122 |
+
swarm = []
|
123 |
+
self.global_best_position = [0, 0]
|
124 |
+
self.global_best_error = float('inf') # Initialize global_best_error with infinity
|
125 |
+
self.gamma = 0.0001
|
126 |
+
function = function_select.value
|
127 |
+
|
128 |
+
for i in range(0, self.num_particles): # For loop to initialize the swarm of particles
|
129 |
+
swarm.append(Particle([self.x_axis[i], self.y_axis[i]]))
|
130 |
+
|
131 |
+
iter_count = 0
|
132 |
+
while self._running: # Loop to identify the best solution depending upon the problem
|
133 |
+
if self.global_best_error <= 0.00001:
|
134 |
+
break
|
135 |
+
|
136 |
+
for j in range(0, self.num_particles):
|
137 |
+
swarm[j].evaluate_fitness(number, self.target, function)
|
138 |
+
|
139 |
+
if swarm[j].get_error() < self.global_best_error:
|
140 |
+
self.global_best_position = swarm[j].get_best_pos()
|
141 |
+
self.global_best_error = swarm[j].get_best_error()
|
142 |
+
|
143 |
+
for j in range(0, self.num_particles):
|
144 |
+
swarm[j].update_velocity(self.global_best_position, max_iter, iter_count)
|
145 |
+
swarm[j].update_position(self.bounds)
|
146 |
+
self.x_axis[j] = swarm[j].get_pos()[0]
|
147 |
+
self.y_axis[j] = swarm[j].get_pos()[1]
|
148 |
+
|
149 |
+
# Add a delay to see the particle movement
|
150 |
+
time.sleep(0.05) # Adjust the delay as needed
|
151 |
+
|
152 |
+
iter_count += 1
|
153 |
+
|
154 |
+
# Update the table with the current global best position
|
155 |
+
update_table = True # <-- Set update_table to True
|
156 |
+
hv.streams.Stream.trigger(table_dmap.streams)
|
157 |
+
|
158 |
+
self.initial = self.global_best_position
|
159 |
+
self._running = False
|
160 |
+
print('Best Position:', self.global_best_position)
|
161 |
+
print('Best Error:', self.global_best_error)
|
162 |
+
print('Function:', function)
|
163 |
+
|
164 |
+
|
165 |
+
# Method to terminate finding the solution of a problem
|
166 |
+
def terminate(self):
|
167 |
+
self._running = False
|
168 |
+
|
169 |
+
# Method to set _running parameter before initializing the swarm
|
170 |
+
def starting(self):
|
171 |
+
self._running = True
|
172 |
+
|
173 |
+
# Method to check if the swarm of particles are in action
|
174 |
+
def isrunning(self):
|
175 |
+
return self._running
|
176 |
+
|
177 |
+
# Getter method to return the number of particles
|
178 |
+
def get_num_particles(self):
|
179 |
+
return self.num_particles
|
180 |
+
|
181 |
+
# Setter method to update the number of particles
|
182 |
+
def update_num_particles(self, new_value):
|
183 |
+
self.num_particles = new_value
|
184 |
+
|
185 |
+
# Getter method to return the x_axis position list for particles in a swarm
|
186 |
+
def get_xaxis(self):
|
187 |
+
return self.x_axis[:] # Return a copy
|
188 |
+
|
189 |
+
# Getter method to return the y_axis position list for particles in a swarm
|
190 |
+
def get_yaxis(self):
|
191 |
+
return self.y_axis[:] # Return a copy
|
192 |
+
|
193 |
+
# Setter method to update the target position
|
194 |
+
def set_target(self, x, y):
|
195 |
+
self.target = [x, y]
|
196 |
+
|
197 |
+
# Getter method to return the target position
|
198 |
+
def get_target(self):
|
199 |
+
return self.target[:] # Return a copy
|
200 |
+
|
201 |
+
# Method to update the length of particles position lists if there is a change in num of particles
|
202 |
+
def update_particles_position_lists(self, updated_num_particles):
|
203 |
+
old_x_value = self.x_axis[0]
|
204 |
+
old_y_value = self.y_axis[0]
|
205 |
+
if updated_num_particles > self.num_particles:
|
206 |
+
for i in range(self.num_particles, updated_num_particles):
|
207 |
+
self.x_axis.append(old_x_value)
|
208 |
+
self.y_axis.append(old_y_value)
|
209 |
+
else:
|
210 |
+
for i in range((self.num_particles) - 1, updated_num_particles - 1, -1):
|
211 |
+
self.x_axis.pop(i)
|
212 |
+
self.y_axis.pop(i)
|
213 |
+
|
214 |
+
# Method to initialize the particles positions randomly
|
215 |
+
def update_particles_position_lists_with_random_values(self):
|
216 |
+
self.x_axis = random.sample(range(-500, 500), self.num_particles)
|
217 |
+
self.y_axis = random.sample(range(-500, 500), self.num_particles)
|
218 |
+
|
219 |
+
pso_swarm = Interactive_PSO() # Creating an interactive PSO to find the target
|
220 |
+
pso_computation_swarm = Interactive_PSO() # Creating an interactive PSO to find the optimal solution of a mathematical function
|
221 |
+
|
222 |
+
update_table = False
|
223 |
+
|
224 |
+
# Method to initialize swarm to find the target in a given search space
|
225 |
+
def start_finding_the_target():
|
226 |
+
pso_swarm.swarm_initialization(1, pso_swarm.max_iter)
|
227 |
+
|
228 |
+
# Method to initialize swarm to compute an optimal solution for a given problem
|
229 |
+
def start_computation():
|
230 |
+
pso_computation_swarm.swarm_initialization(2, pso_computation_swarm.max_iter)
|
231 |
+
|
232 |
+
# On event function for single tap to create and return the target with updated position
|
233 |
+
def create_target_element(x, y):
|
234 |
+
pso_swarm.terminate()
|
235 |
+
if x is not None:
|
236 |
+
pso_swarm.set_target(x, y)
|
237 |
+
return hv.Points((x, y, 1), label='Target').opts(color='red', marker='^', size=10)
|
238 |
+
|
239 |
+
# Function to stream the particles of pso_swarm to dynamic map in regular intervals
|
240 |
+
def update():
|
241 |
+
x_axis = pso_swarm.get_xaxis()
|
242 |
+
y_axis = pso_swarm.get_yaxis()
|
243 |
+
data = (x_axis, y_axis, np.random.random(size=len(x_axis)))
|
244 |
+
pop_scatter = hv.Scatter(data, vdims=['y_axis', 'z'])
|
245 |
+
pop_scatter.opts(size=8, color='z', cmap='Coolwarm_r')
|
246 |
+
return pop_scatter
|
247 |
+
|
248 |
+
# On event function for update button click to update the number of particles in both the swarms
|
249 |
+
def computational_update():
|
250 |
+
x_axis = pso_computation_swarm.get_xaxis()
|
251 |
+
y_axis = pso_computation_swarm.get_yaxis()
|
252 |
+
data = (x_axis, y_axis, np.random.random(size=len(x_axis)))
|
253 |
+
pop_scatter1 = hv.Scatter(data, vdims=['y_axis', 'z'])
|
254 |
+
pop_scatter1.opts(size=8, color='z', cmap='Coolwarm_r')
|
255 |
+
return pop_scatter1
|
256 |
+
|
257 |
+
# On event function for update button click to update the number of particles in both the swarms
|
258 |
+
def update_num_particles_event(event):
|
259 |
+
if population_slider.value == pso_swarm.get_num_particles():
|
260 |
+
return
|
261 |
+
pso_swarm.terminate()
|
262 |
+
pso_computation_swarm.terminate()
|
263 |
+
time.sleep(1)
|
264 |
+
updated_num_particles = population_slider.value
|
265 |
+
pso_swarm.update_particles_position_lists(updated_num_particles)
|
266 |
+
pso_swarm.update_num_particles(updated_num_particles)
|
267 |
+
pso_computation_swarm.update_num_particles(updated_num_particles)
|
268 |
+
pso_computation_swarm.update_particles_position_lists_with_random_values()
|
269 |
+
pso_swarm.update_particles_position_lists_with_random_values() # Update positions for pso_swarm as well
|
270 |
+
hv.streams.Stream.trigger(pso_scatter1.streams)
|
271 |
+
hv.streams.Stream.trigger(pso_scatter.streams)
|
272 |
+
|
273 |
+
# Periodic Callback function for every 3 seconds to stream the data to dynamic maps
|
274 |
+
def trigger_streams():
|
275 |
+
global update_table
|
276 |
+
hv.streams.Stream.trigger(pso_scatter.streams)
|
277 |
+
hv.streams.Stream.trigger(pso_scatter1.streams)
|
278 |
+
if update_table:
|
279 |
+
update_table = False
|
280 |
+
hv.streams.Stream.trigger(table_dmap.streams)
|
281 |
+
|
282 |
+
# Update the target position
|
283 |
+
tap.event(x=pso_swarm.get_target()[0], y=pso_swarm.get_target()[1])
|
284 |
+
|
285 |
+
# Slow down the swarm's speed
|
286 |
+
time.sleep(0.05) # Adjust the delay as needed
|
287 |
+
|
288 |
+
# On event function for begin the hunting button click to start hunting for the target
|
289 |
+
def hunting_button_event(event):
|
290 |
+
if not pso_swarm.isrunning():
|
291 |
+
pso_swarm.starting()
|
292 |
+
threading.Thread(target=start_finding_the_target).start()
|
293 |
+
|
294 |
+
# On event function for start the computation button click to start computation for a mathematical function
|
295 |
+
def computation_button_event(event):
|
296 |
+
if not pso_computation_swarm.isrunning():
|
297 |
+
pso_computation_swarm.starting()
|
298 |
+
threading.Thread(target=start_computation).start()
|
299 |
+
|
300 |
+
def table():
|
301 |
+
position = pso_computation_swarm.global_best_position
|
302 |
+
df = pd.DataFrame({
|
303 |
+
'x_position': [round(position[0])],
|
304 |
+
'y_position': [round(position[1])]
|
305 |
+
})
|
306 |
+
|
307 |
+
# Create an hv.Table with the data
|
308 |
+
hv_table = hv.Table(df).opts(width=300, height=100)
|
309 |
+
|
310 |
+
return hv_table
|
311 |
+
|
312 |
+
|
313 |
+
# Function to update the mathematical function for which swarm finds the optimal solution
|
314 |
+
def update_function(event):
|
315 |
+
pso_computation_swarm.terminate()
|
316 |
+
time.sleep(1)
|
317 |
+
pso_computation_swarm.update_particles_position_lists_with_random_values()
|
318 |
+
|
319 |
+
|
320 |
+
# Two dynamic maps for two interactive PSOs, one for finding a target and one for computation of a mathematical function
|
321 |
+
pso_scatter = hv.DynamicMap(update, streams=[Stream.define('Next')()]).opts(xlim=(-500, 500), ylim=(-500, 500),
|
322 |
+
title="Plot 2 : PSO for target finding ")
|
323 |
+
pso_scatter1 = hv.DynamicMap(computational_update, streams=[Stream.define('Next')()]).opts(xlim=(-500, 500),
|
324 |
+
ylim=(-500, 500),
|
325 |
+
title="Plot 1 : PSO for a mathematical computation")
|
326 |
+
|
327 |
+
# Dynamic map to update and display target
|
328 |
+
tap = hv.streams.SingleTap(x=pso_swarm.get_target()[0], y=pso_swarm.get_target()[1])
|
329 |
+
target_dmap = hv.DynamicMap(create_target_element, streams=[tap])
|
330 |
+
|
331 |
+
# Define custom CSS styles for the table container
|
332 |
+
custom_style = {
|
333 |
+
'background': '##4287f5', # Background color
|
334 |
+
'border': '1px solid black', # Border around the table
|
335 |
+
'padding': '8px', # Padding inside the container
|
336 |
+
'box-shadow': '5px 5px 5px #bcbcbc' # Box shadow for a 3D effect
|
337 |
+
}
|
338 |
+
|
339 |
+
# Dynamic map to update the table with continuous global best position of the swarm
|
340 |
+
table_dmap = hv.DynamicMap(table,streams=[hv.streams.Stream.define('Next')()])
|
341 |
+
table_label = pn.pane.Markdown("Once an optimal solution is found in plot 1 it is updated in the below table")
|
342 |
+
|
343 |
+
# Button to order the swarm of particles to start finding the target
|
344 |
+
start_hunting_button = pn.widgets.Button(name=' Click to find target for plot 2 ', width=50)
|
345 |
+
start_hunting_button.on_click(hunting_button_event)
|
346 |
+
|
347 |
+
# Button to order the swarm of particles to start computation for selected mathematical function
|
348 |
+
start_finding_button = pn.widgets.Button(name=' Click to start computation for plot 1', width=50)
|
349 |
+
start_finding_button.on_click(computation_button_event)
|
350 |
+
|
351 |
+
# Button to update number of particles
|
352 |
+
update_num_particles_button = pn.widgets.Button(name='Update number of particles', width=50)
|
353 |
+
update_num_particles_button.on_click(update_num_particles_event)
|
354 |
+
|
355 |
+
# periodic callback for every three seconds to trigger streams method
|
356 |
+
pn.state.add_periodic_callback(trigger_streams, 3)
|
357 |
+
|
358 |
+
# Slider to change the number of particles
|
359 |
+
population_slider = pn.widgets.IntSlider(name='Number of praticles', start=10, end=100, value=25)
|
360 |
+
|
361 |
+
# Dropdown list to select a mathematical function
|
362 |
+
function_select = pn.widgets.Select(name='Select', options=['x^2+(y-100)^2','(x-234)^2+(y+100)^2', 'x^3 + y^3 - 3*x*y', 'x^2 * y^2'])
|
363 |
+
function_select.param.watch(update_function,'value')
|
364 |
+
|
365 |
+
#combining the dynamic maps with particles and target into one dynamicmap
|
366 |
+
plot_for_finding_the_target = pso_scatter*target_dmap
|
367 |
+
|
368 |
+
# Building the layout and returning the dashboard
|
369 |
+
dashboard = pn.Column(pn.Row(pn.Row(pso_scatter1.opts(width=500, height=500)), pn.Column(plot_for_finding_the_target.opts(width=500, height=500)),
|
370 |
+
pn.Column(pn.Column(table_label, table_dmap, styles=custom_style), start_finding_button, start_hunting_button, update_num_particles_button, population_slider,function_select)))
|
371 |
+
|
372 |
+
pn.panel(dashboard).servable(title='Swarm Particles Visualization')
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
panel
|
2 |
+
bokeh
|
3 |
+
numpy
|
4 |
+
holoviews
|
5 |
+
pandas
|
6 |
+
colormap
|
7 |
+
matplotlib
|
8 |
+
webcolors
|
9 |
+
thread6
|
10 |
+
sympy
|