Spaces:
Build error
Build error
import os | |
os.system("pip install gradio==3.0.18") | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification | |
import gradio as gr | |
import spacy | |
nlp = spacy.load('en_core_web_sm') | |
nlp.add_pipe('sentencizer') | |
def split_in_sentences(text): | |
doc = nlp(text) | |
return [str(sent).strip() for sent in doc.sents] | |
def make_spans(text,results): | |
results_list = [] | |
for i in range(len(results)): | |
results_list.append(results[i]['label']) | |
facts_spans = [] | |
facts_spans = list(zip(split_in_sentences(text),results_list)) | |
return facts_spans | |
auth_token = os.environ.get("HF_Token") | |
##Speech Recognition | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
def transcribe(audio): | |
text = asr(audio)["text"] | |
return text | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
return text | |
##Summarization | |
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM") | |
def summarize_text(text): | |
resp = summarizer(text) | |
stext = resp[0]['summary_text'] | |
return stext | |
summarizer1 = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
def summarize_text1(text): | |
resp = summarizer1(text) | |
stext = resp[0]['summary_text'] | |
return stext | |
summarizer2 = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI") | |
def summarize_text2(text): | |
resp = summarizer2(text) | |
stext = resp[0]['summary_text'] | |
return stext | |
##Fiscal Tone Analysis | |
sen_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone') | |
# sen_model= pipeline("sentiment-analysis", model='knkarthick/Sentiment-Analysis', tokenizer='knkarthick/Sentiment-Analysis') | |
def text_to_sentiment(text): | |
sentiment = sen_model(text)[0]["label"] | |
return sentiment | |
##Fiscal Sentiment by Sentence | |
def sen_ext(text): | |
results = sen_model(split_in_sentences(text)) | |
return make_spans(text,results) | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("## Meeting Transcript AI Use Cases") | |
gr.Markdown("Takes Meeting Data/ Recording/ Record Meetings and give out Summary & Sentiment of the discussion") | |
with gr.Row(): | |
with gr.Column(): | |
audio_file = gr.inputs.Audio(source="microphone", type="filepath") | |
with gr.Row(): | |
b1 = gr.Button("Recognize Speech") | |
with gr.Row(): | |
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.") | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
with gr.Row(): | |
b2 = gr.Button("Dialogue Sentiment Analysis") | |
fin_spans = gr.HighlightedText() | |
b2.click(sen_ext, inputs=text, outputs=fin_spans) | |
with gr.Row(): | |
b3 = gr.Button("Summarization Outputs") | |
with gr.Column(): | |
with gr.Row(): | |
stext = gr.Textbox(label="Model-I") | |
b3.click(summarize_text, inputs=text, outputs=stext) | |
with gr.Column(): | |
with gr.Row(): | |
stext1 = gr.Textbox(label="Model-II") | |
b3.click(summarize_text1, inputs=text, outputs=stext1) | |
with gr.Column(): | |
with gr.Row(): | |
stext2 = gr.Textbox(label="Model-III") | |
b3.click(summarize_text2, inputs=text, outputs=stext2) | |
with gr.Row(): | |
b4 = gr.Button("Sentiment Analysis") | |
with gr.Column(): | |
with gr.Row(): | |
label = gr.Label(label="Sentiment Of Summary-I") | |
b4.click(text_to_sentiment, inputs=stext, outputs=label) | |
with gr.Column(): | |
with gr.Row(): | |
label1 = gr.Label(label="Sentiment Of Summary-II") | |
b4.click(text_to_sentiment, inputs=stext1, outputs=label1) | |
with gr.Column(): | |
with gr.Row(): | |
label2 = gr.Label(label="Sentiment Of Summary-III") | |
b4.click(text_to_sentiment, inputs=stext2, outputs=label2) | |
demo.launch() |