Spaces:
Runtime error
Runtime error
{ | |
"MDC": [ | |
"metering data collector", | |
"mobile data challenge", | |
"multiple description coding" | |
], | |
"SVM": [ | |
"support vector machine", | |
"state vector machine" | |
], | |
"MER": [ | |
"maximum entropy regularizer", | |
"music emotion research", | |
"music emotion recognition" | |
], | |
"SVC": [ | |
"support vector classifier", | |
"scalable video coding" | |
], | |
"CNN": [ | |
"convolutional neural network", | |
"condensed nearest neighbor", | |
"complicated neural networks", | |
"citation nearest neighbour" | |
], | |
"FEC": [ | |
"forward error correction", | |
"federal election candidate" | |
], | |
"FSM": [ | |
"finite state machine", | |
"fast sweeping method" | |
], | |
"LDA": [ | |
"latent dirichlet allocation", | |
"linear discriminant analysis" | |
], | |
"FR": [ | |
"frame recall", | |
"faster r - cnn", | |
"fooling rate" | |
], | |
"TF": [ | |
"term frequency", | |
"trend filtering", | |
"tensor factorization", | |
"transcription factor" | |
], | |
"SS": [ | |
"speech synthesis", | |
"single stage", | |
"stochastic search", | |
"social status", | |
"spectrum sensing", | |
"severe sepsis", | |
"scheduled sampling", | |
"secondary structure", | |
"simple sum" | |
], | |
"GPS": [ | |
"global positioning system", | |
"general pattern search", | |
"generalized propensity score" | |
], | |
"PCA": [ | |
"principal component analysis", | |
"posterior cortical atrophy" | |
], | |
"MSE": [ | |
"mean squared error", | |
"model selection eqn", | |
"minimum square error" | |
], | |
"ILP": [ | |
"inductive logic programming", | |
"integer linear programming" | |
], | |
"MTI": [ | |
"mixture time invariant", | |
"medical text indexer" | |
], | |
"SNN": [ | |
"siamese neural network", | |
"spiking neural networks" | |
], | |
"SOP": [ | |
"sentence order prediction", | |
"secrecy outage probability" | |
], | |
"SVD": [ | |
"singular value decomposition", | |
"singing voice detection" | |
], | |
"CD": [ | |
"cosine distance", | |
"contrastive divergence", | |
"consecutive disks", | |
"critical difference", | |
"chamfer distance", | |
"contact distance", | |
"cover difference", | |
"chemical diagram", | |
"crohn 's disease" | |
], | |
"OCR": [ | |
"optical character recognition", | |
"one - to - one character replacements" | |
], | |
"MRC": [ | |
"machine reading comprehension", | |
"maximal ratio combining", | |
"magnetic resonance coupling" | |
], | |
"SAP": [ | |
"stable abstraction principle", | |
"simple amplitude presitortion" | |
], | |
"DPP": [ | |
"determinantal point process", | |
"disjoint paths problem" | |
], | |
"QRF": [ | |
"quantile random forest", | |
"quantile regression forest" | |
], | |
"GCM": [ | |
"google cloud messaging", | |
"generalized cell - to - cell mapping", | |
"general circulation model", | |
"galois / counter mode", | |
"global circulation model" | |
], | |
"PPP": [ | |
"poisson point process", | |
"palm point process" | |
], | |
"FCN": [ | |
"fully convolutional neural network", | |
"fully connected network" | |
], | |
"RNN": [ | |
"recurrent neural network", | |
"random neural networks", | |
"recursive neural network", | |
"reverse nearest neighbour" | |
], | |
"ML": [ | |
"machine learning", | |
"maximum likelihood", | |
"model logic", | |
"malware landscape", | |
"mortar luminance" | |
], | |
"BC": [ | |
"bandwidth constraint", | |
"betweenness centrality", | |
"between class", | |
"broadcast channel", | |
"blockchain" | |
], | |
"BN": [ | |
"bayesian network", | |
"batch normalization" | |
], | |
"TC": [ | |
"telephone conversations", | |
"town crier", | |
"tumor core", | |
"time - continuous", | |
"target country", | |
"total cover", | |
"traffic class", | |
"total correlation" | |
], | |
"TS": [ | |
"tree structures", | |
"terminal stance", | |
"temperature scaling", | |
"temperature - based sampling", | |
"tabu search", | |
"thompson sampling", | |
"time series", | |
"time switching", | |
"target syntactic", | |
"text summarization", | |
"triadic simmelian", | |
"tessellation shader" | |
], | |
"HPC": [ | |
"high performance computing", | |
"hardware performance counters" | |
], | |
"OSS": [ | |
"orthogonal spectrum sharing", | |
"open source software" | |
], | |
"MAD": [ | |
"median absolute difference", | |
"median absolute deviations", | |
"map attention decision" | |
], | |
"POS": [ | |
"partial optimal slacking", | |
"part of speech" | |
], | |
"SSD": [ | |
"solid state disk", | |
"single shot detection" | |
], | |
"FA": [ | |
"feature alignment", | |
"fractional anisotropy", | |
"feedback alignment", | |
"failure analysis", | |
"firefly algorithm", | |
"false alarm", | |
"fault attack" | |
], | |
"GPA": [ | |
"gaussian process adaptation", | |
"generalized procrustes analysis", | |
"graph partition algorithm" | |
], | |
"APS": [ | |
"adaptive patch selection", | |
"adaptive patch search", | |
"american physical society", | |
"augmented path schema" | |
], | |
"FEM": [ | |
"finite element method", | |
"finite element methodgm97" | |
], | |
"CT": [ | |
"computed tomography", | |
"constraint theory", | |
"contributor trust", | |
"conditional training", | |
"crowd trust", | |
"confidential transactions", | |
"coordinated turn", | |
"class table" | |
], | |
"CAD": [ | |
"coronary artery disease", | |
"computer aided design", | |
"computer aided diagnosis" | |
], | |
"IR": [ | |
"imbalance ratio", | |
"individual rationality", | |
"information retrieval", | |
"interference range", | |
"immediate regret", | |
"influence rank", | |
"influence ratio", | |
"integrates results", | |
"incremental relaying", | |
"image resolution", | |
"inactive region" | |
], | |
"SMT": [ | |
"satisfiability modulo theory", | |
"statistical machine translation", | |
"semantic mask transfer" | |
], | |
"ER": [ | |
"entity relationship", | |
"error rate", | |
"erdos - renyi", | |
"experience replay", | |
"estrogen receptor", | |
"entity recognition", | |
"encoder rnn" | |
], | |
"JCR": [ | |
"journal citation report", | |
"jointly convex representation" | |
], | |
"STBM": [ | |
"stochastic topic block model", | |
"stochastic tensor block model" | |
], | |
"EC": [ | |
"evolutionary computation", | |
"equivalence class", | |
"eigenvector centrality", | |
"effective concentration", | |
"empty categories", | |
"emergent configuration" | |
], | |
"UE": [ | |
"user equilibrium", | |
"unreal engine", | |
"user equipment" | |
], | |
"ODE": [ | |
"o - d demand estimation", | |
"ordinary differential equation" | |
], | |
"VI": [ | |
"vector initialization", | |
"variable importance", | |
"variational inference", | |
"variational information", | |
"vegetation indices" | |
], | |
"RI": [ | |
"random indexing", | |
"rand index" | |
], | |
"DM": [ | |
"distribution matching", | |
"discovery of models", | |
"dialog management", | |
"directional modulation", | |
"data management" | |
], | |
"ASE": [ | |
"amplified spontaneous emission", | |
"average scale error" | |
], | |
"AIR": [ | |
"achievable information rates", | |
"application instance role" | |
], | |
"TL": [ | |
"tracking logic", | |
"transfer learning" | |
], | |
"RTS": [ | |
"request to send", | |
"real time strategy" | |
], | |
"MAC": [ | |
"medium access control", | |
"multiple access channels", | |
"mandatory access control", | |
"message authentication code", | |
"metropolitan airports commission", | |
"multiply accumulate", | |
"multiple access control" | |
], | |
"DCF": [ | |
"distributed coordination function", | |
"discriminative correlation filter" | |
], | |
"GK": [ | |
"graphlet kernel", | |
"greedy knapsack" | |
], | |
"DCNN": [ | |
"deep convolutional neural network", | |
"dynamic convolutional neural network" | |
], | |
"PSD": [ | |
"power spectral density", | |
"phase shift difference" | |
], | |
"CA": [ | |
"corresponding arcs", | |
"current account", | |
"contention adaptions", | |
"combinatorial auction", | |
"cumulative activation", | |
"cellular automata", | |
"coordinate ascent", | |
"classification accuracy", | |
"context adaptation", | |
"cardiac amyloidosis", | |
"contextual attention", | |
"conversational analysis", | |
"certificate authority", | |
"community animator", | |
"conditioning augmentation", | |
"character - level accuracy", | |
"coded aperture" | |
], | |
"ICP": [ | |
"iterative closest point", | |
"inductive conformal prediction", | |
"iterative cache placement" | |
], | |
"MAE": [ | |
"mean absolute error", | |
"maximum absolute error", | |
"mean average error" | |
], | |
"RL": [ | |
"reinforcement learning", | |
"representation learning", | |
"robot learning", | |
"relative location", | |
"restrained lloyd", | |
"resource limitations", | |
"robust locomotion" | |
], | |
"CRF": [ | |
"conditional random field", | |
"constant rate factor", | |
"correlation robust function" | |
], | |
"NP": [ | |
"noun phrase", | |
"non - emptiness problem", | |
"neural pooling", | |
"no peepholes", | |
"natural problem", | |
"new persian", | |
"neural processes" | |
], | |
"DSL": [ | |
"domain - specific language", | |
"distributed spectrum ledger" | |
], | |
"CV": [ | |
"cross validation", | |
"constant velocity", | |
"computer vision", | |
"crowd votes" | |
], | |
"OT": [ | |
"oblivious transfer", | |
"optimal transport", | |
"orthogonal training", | |
"optimality theory" | |
], | |
"MPC": [ | |
"multi - party computation", | |
"model predictive control", | |
"massively parallel computation" | |
], | |
"AC": [ | |
"audio commons", | |
"attack criteria", | |
"auto - correlation", | |
"actor - critic", | |
"atrous convolution", | |
"access category", | |
"autonomic computing", | |
"activation clustering", | |
"admission control", | |
"alternating current", | |
"access categories", | |
"avoid congestion" | |
], | |
"AA": [ | |
"astronomy and astrophysics", | |
"authorship attribution", | |
"affine arithmetic", | |
"adamic adar" | |
], | |
"TI": [ | |
"temporal interactions", | |
"threshold initialization", | |
"tone injection", | |
"temporal information" | |
], | |
"CIA": [ | |
"confidentiality , integrity , and availability", | |
"central intelligence agency" | |
], | |
"PR": [ | |
"preimage resistant", | |
"preference ratio", | |
"patient record", | |
"pilot reuse", | |
"precision - recall", | |
"perfect reconstruction", | |
"passage retrieval", | |
"pagerank", | |
"perfectly reconstructible" | |
], | |
"CR": [ | |
"collision resistant", | |
"cognitive radio", | |
"communication region", | |
"containment relations", | |
"collective rationality", | |
"coreference resolution", | |
"code rate", | |
"carriage returns", | |
"contention resolution" | |
], | |
"IF": [ | |
"interference factor", | |
"instantaneous frequency", | |
"intermediate frequency", | |
"isolation forest" | |
], | |
"SPA": [ | |
"simple power analysis", | |
"saturation peak analysis", | |
"spatial preferential attachment" | |
], | |
"SM": [ | |
"scalar multiplication", | |
"spatial modulation", | |
"scattering modulation", | |
"streaming multiprocessors", | |
"synthesis module", | |
"stream multiprocessor", | |
"speaker model", | |
"supplementary material", | |
"spectral matching", | |
"social media", | |
"single service manager", | |
"service manager", | |
"shared memory", | |
"state machine", | |
"system model" | |
], | |
"PM": [ | |
"point multiplication", | |
"polarization - multiplexed", | |
"probabilistic model", | |
"physical machines", | |
"prediction model" | |
], | |
"RPC": [ | |
"randomized projective coordinate", | |
"remote procedure calls" | |
], | |
"FPM": [ | |
"fixed point multiplication", | |
"face prediction model" | |
], | |
"MPI": [ | |
"message passing interface", | |
"multiple parallel instances" | |
], | |
"GA": [ | |
"global arrays", | |
"genetic algorithm", | |
"graduated assignment" | |
], | |
"LSU": [ | |
"louisiana state university", | |
"load - store unit" | |
], | |
"PSC": [ | |
"pittsburgh supercomputing center", | |
"partial set cover", | |
"paper sentence classification" | |
], | |
"MT": [ | |
"machine translation", | |
"merkle tree" | |
], | |
"CS": [ | |
"computer systems", | |
"computer science", | |
"clonal selection", | |
"connection size", | |
"computational science", | |
"centralized solution", | |
"compressive sensing", | |
"core semantics", | |
"coordinated scheduling", | |
"charging station", | |
"constraint solver", | |
"conventional sparsity", | |
"compressed sensing", | |
"critical section", | |
"common subset", | |
"content store", | |
"case - sensitive", | |
"consensus score", | |
"code - switching", | |
"cluster - specific" | |
], | |
"LOS": [ | |
"length of stay", | |
"line of sight" | |
], | |
"RF": [ | |
"random forest", | |
"radio frequency", | |
"regression function", | |
"regression forest", | |
"register file" | |
], | |
"HS": [ | |
"hourly - similarity", | |
"horn and schunck", | |
"hierarchical softmax" | |
], | |
"VSM": [ | |
"vector space model", | |
"vacationing server model" | |
], | |
"CC": [ | |
"charging current", | |
"corpus callosum", | |
"collision cone", | |
"cross - correlation", | |
"creative commons", | |
"central cloud", | |
"classifier chain", | |
"closeness centrality", | |
"constant charging", | |
"cover complexity", | |
"connected caveman", | |
"constant current", | |
"collaboration coefficient", | |
"covert channels", | |
"correlation constraints", | |
"core connected" | |
], | |
"DBN": [ | |
"deep belief network", | |
"dynamic bayesian network", | |
"directed belief net" | |
], | |
"DR": [ | |
"dimension reduction", | |
"demand response", | |
"diagnosis record", | |
"detecting repetitions", | |
"dispersion reduction", | |
"digit reversal", | |
"differential rectifier", | |
"dimensionality reduction", | |
"document retrieval", | |
"decoder rnn" | |
], | |
"EM": [ | |
"expectation maximization", | |
"exact match", | |
"electron microscopy" | |
], | |
"FS": [ | |
"feature selection", | |
"frame semantic", | |
"fraudulent services", | |
"fully sampled", | |
"fragment shader" | |
], | |
"MA": [ | |
"moving average", | |
"multiple assignment", | |
"merlin - arthur", | |
"mobile agent" | |
], | |
"PSO": [ | |
"particle swarm optimization", | |
"power system operations" | |
], | |
"ABC": [ | |
"artificial bee colony", | |
"absorbing boundary condition" | |
], | |
"MP": [ | |
"message passing", | |
"matching pursuit", | |
"most popular", | |
"max pooling", | |
"mean precision", | |
"mask pyramid" | |
], | |
"BM": [ | |
"bare metal", | |
"black males" | |
], | |
"VM": [ | |
"virtual machine", | |
"visual module", | |
"von mises" | |
], | |
"BEA": [ | |
"building educational applications", | |
"bond energy algorithm" | |
], | |
"MMD": [ | |
"maximum mean discrepancy", | |
"minimizes marginal distribution" | |
], | |
"FC": [ | |
"fully connected", | |
"fusion center", | |
"fixed confidence", | |
"filter controls", | |
"frame content", | |
"fashion compatibility", | |
"fiscal code" | |
], | |
"FP": [ | |
"function processor", | |
"false positive", | |
"frequency partitioning", | |
"floating point", | |
"failure prediction", | |
"fixed point" | |
], | |
"SDR": [ | |
"software defined radio", | |
"semidefine relaxation", | |
"structured domain randomization" | |
], | |
"BO": [ | |
"backoff", | |
"bayesian optimisation" | |
], | |
"EL": [ | |
"euler - lagrange", | |
"entity linking", | |
"edge length", | |
"episode length", | |
"external links" | |
], | |
"LSB": [ | |
"least squares boosting", | |
"least significant bit" | |
], | |
"FIM": [ | |
"fisher information matrix", | |
"fragment identifier messaging", | |
"fast iterative method" | |
], | |
"DF": [ | |
"direction facilities", | |
"dominating frequencies" | |
], | |
"ACL": [ | |
"agent communication language", | |
"access control list" | |
], | |
"ARC": [ | |
"australian research council", | |
"adaptive - robust control" | |
], | |
"SAR": [ | |
"synthetic aperture radar", | |
"socially assistive robots", | |
"search and rescue", | |
"sensing application recently" | |
], | |
"OSI": [ | |
"open systems interconnection", | |
"open source initiative" | |
], | |
"RLC": [ | |
"random linear coding", | |
"radio link control" | |
], | |
"RS": [ | |
"running sum", | |
"residual splash", | |
"rate - selective", | |
"relay station", | |
"random search", | |
"remote sensing", | |
"recommender systems", | |
"rate splitting", | |
"randomly sampled", | |
"random split", | |
"rate saturation", | |
"real satellite" | |
], | |
"NN": [ | |
"neural network", | |
"nearest neighbor" | |
], | |
"NB": [ | |
"negative binomial", | |
"naive bayes", | |
"new brunswick" | |
], | |
"HOS": [ | |
"higher - order spectra", | |
"higher order statistics" | |
], | |
"SA": [ | |
"structural accuracy", | |
"single architecture", | |
"stacked autoencoders", | |
"simulated annealing", | |
"signal analysis", | |
"sensitivity analysis", | |
"strongly adaptive", | |
"sensing antennas", | |
"significance and accuracy", | |
"satisfies aass", | |
"situational awareness", | |
"subspace alignment", | |
"steepest ascent", | |
"scores anatomical", | |
"string analysis" | |
], | |
"EI": [ | |
"expected improvement", | |
"epidemic intelligence", | |
"event interaction" | |
], | |
"MCC": [ | |
"matthews correlation coefficient", | |
"minimum coefficient correlation", | |
"mobile cloud computing", | |
"mesoscale cellular convection", | |
"maximal connected component" | |
], | |
"ROC": [ | |
"receiver operating characteristic", | |
"restricted orthogonal constants" | |
], | |
"NBC": [ | |
"naive bayes classifier", | |
"non - parametric bayesian classification" | |
], | |
"SK": [ | |
"string kernel", | |
"septic shock" | |
], | |
"MTL": [ | |
"medial temporal lobe", | |
"multi - task learning" | |
], | |
"IL": [ | |
"imitation learning", | |
"intermediate level" | |
], | |
"DMP": [ | |
"dynamic movement primitives", | |
"digital motion processor" | |
], | |
"GCP": [ | |
"graph compression problem", | |
"grid connection point" | |
], | |
"IP": [ | |
"intellectual property", | |
"internet protocol", | |
"inductive programming", | |
"inverse proportion", | |
"intercept probability", | |
"image preprocessing", | |
"integer programming" | |
], | |
"TLS": [ | |
"transport layer security", | |
"terrestrial laser scanning" | |
], | |
"PAD": [ | |
"probe attempt detector", | |
"presentation attack detection" | |
], | |
"ASM": [ | |
"active shape model", | |
"alphabet set multiplier" | |
], | |
"DMD": [ | |
"dynamic mirror descent", | |
"digital micro - mirror device", | |
"deficient mapping dissolution" | |
], | |
"EMA": [ | |
"exponential moving average", | |
"ecological momentary assessment" | |
], | |
"MAPE": [ | |
"mean absolute percentage error", | |
"mean average percent error" | |
], | |
"MAP": [ | |
"maximum a posteriori", | |
"mean average precision" | |
], | |
"DN": [ | |
"distinguished name", | |
"destination node" | |
], | |
"PCC": [ | |
"pre - activation convolutional cell(the", | |
"pearson correlation coefficient" | |
], | |
"AL": [ | |
"adversarial loss", | |
"active learning" | |
], | |
"US": [ | |
"ultrasound", | |
"united states", | |
"uncertainty sampling" | |
], | |
"MR": [ | |
"magnetic resonance", | |
"minimum read", | |
"majority rule", | |
"model risk", | |
"middle resolution", | |
"mean recall", | |
"machine reading", | |
"meaning representation", | |
"morphological richness", | |
"mixed reality" | |
], | |
"HR": [ | |
"high - resolution", | |
"heart rate" | |
], | |
"IS": [ | |
"inception score", | |
"importance sampling", | |
"information systems" | |
], | |
"LDP": [ | |
"large deviation principle", | |
"low degeneracy partition", | |
"local differential privacy" | |
], | |
"ACE": [ | |
"average causal effect", | |
"advanced combined encoder", | |
"average coverage error" | |
], | |
"OPS": [ | |
"orthogonal pilot sequences", | |
"one posterior sample" | |
], | |
"MDS": [ | |
"maximum distance separable", | |
"minimum dominating set", | |
"multi - dimensional scaling" | |
], | |
"IPS": [ | |
"intrusion prevention system", | |
"inverse propensity scaling", | |
"interactive proof systems" | |
], | |
"BMS": [ | |
"building management system", | |
"battery management system" | |
], | |
"PP": [ | |
"prepositional phrase", | |
"point process", | |
"pairwise product", | |
"pairwise perturbation", | |
"privacy preferences", | |
"present and predominant" | |
], | |
"PF": [ | |
"particle filter", | |
"pareto - fair", | |
"propagation fusion", | |
"power flow", | |
"poloidal field" | |
], | |
"NF": [ | |
"naive fusion", | |
"noise figure", | |
"new foundations" | |
], | |
"TAM": [ | |
"technology acceptance model", | |
"transparent attention model" | |
], | |
"DFT": [ | |
"density functional theory", | |
"discrete fourier transformation", | |
"disk failure tolerant", | |
"design - for - test" | |
], | |
"CKD": [ | |
"conditional kernel density", | |
"child key derivation", | |
"chronic kidney disease" | |
], | |
"AR": [ | |
"auto - regression", | |
"average recall", | |
"anaphora resolution", | |
"augmented reality", | |
"accumulated reward" | |
], | |
"CSPs": [ | |
"cloud service providers", | |
"constraint satisfaction problems" | |
], | |
"CAP": [ | |
"consistency availability partition", | |
"cumulative accuracy profit", | |
"carrier - less amplitude and phase" | |
], | |
"DSM": [ | |
"data store module", | |
"data stream manager", | |
"demand side management", | |
"distributional semantic model", | |
"digital surface model" | |
], | |
"CAS": [ | |
"content addressed storage", | |
"computer algebra systems", | |
"consensus attention sum" | |
], | |
"PD": [ | |
"progressive disease", | |
"prisoner 's dilemma", | |
"pu - primary destination", | |
"positive definite", | |
"parkinson 's disease", | |
"pixel discussion" | |
], | |
"PPMI": [ | |
"parkinson 's progression markers initiative", | |
"positive pointwise mutual information" | |
], | |
"EHRs": [ | |
"electronic health records", | |
"energy harvesting receivers" | |
], | |
"LCP": [ | |
"linear complementarity problem", | |
"locally compact polish", | |
"longest common prefix", | |
"linearly compressed page" | |
], | |
"SD": [ | |
"strong dominance", | |
"secure digital", | |
"standard deviation", | |
"strategic dependency", | |
"soft decision", | |
"symbolic differentiation", | |
"sphere decoding", | |
"selection diversity", | |
"stochastically dominate", | |
"structural diagram" | |
], | |
"GVF": [ | |
"generalized value function", | |
"gradient vector flow" | |
], | |
"ASA": [ | |
"adaptive segmentation algorithm", | |
"accessible surface area" | |
], | |
"GMM": [ | |
"gaussian mixture model", | |
"group marching method" | |
], | |
"MD": [ | |
"molecular dynamics", | |
"morphological disambiguation", | |
"mixed decoding", | |
"model distillation", | |
"memoryless deterministic", | |
"mean diffusivity", | |
"massa de dados", | |
"multiple description", | |
"missed detection" | |
], | |
"LP": [ | |
"linear programming", | |
"label powerset", | |
"label propagation" | |
], | |
"CPM": [ | |
"critical path method", | |
"competition performance metric", | |
"completely positive maps", | |
"clique percolation method", | |
"continuous profile model", | |
"cost per mille" | |
], | |
"HD": [ | |
"hausdorff distance", | |
"high definition", | |
"hard decision", | |
"harmonic distortion", | |
"huntington 's disease" | |
], | |
"LD": [ | |
"levenshtein distance", | |
"line difference", | |
"loads data", | |
"large deviation", | |
"link density" | |
], | |
"ST": [ | |
"stomach", | |
"split - turnip", | |
"sleep telemetry", | |
"semantic tagging", | |
"single trails", | |
"smart thermostat", | |
"steiner tree" | |
], | |
"RK": [ | |
"right kidney", | |
"root key" | |
], | |
"RDM": [ | |
"russian dolls model", | |
"representational dissimilarity matrix" | |
], | |
"NEB": [ | |
"nudged elastic band", | |
"next event backtracking" | |
], | |
"CF": [ | |
"collaborative filtering", | |
"crest factor", | |
"code - mixed factor", | |
"complexity factor", | |
"correlation filter" | |
], | |
"CTR": [ | |
"click through rates", | |
"collaborative topic regression", | |
"character transfer rate" | |
], | |
"MF": [ | |
"matrix factorization", | |
"model fair", | |
"membership function", | |
"model - free" | |
], | |
"ET": [ | |
"energy transmitters", | |
"evidence theory", | |
"enhancing tumor", | |
"elastic transformations", | |
"emission tomography" | |
], | |
"ANN": [ | |
"approximate nearest neighbor", | |
"artificial neural network" | |
], | |
"AI": [ | |
"artificial intelligence", | |
"article influence" | |
], | |
"DPI": [ | |
"deep packet inspection", | |
"data processing inequality" | |
], | |
"LR": [ | |
"logistic regression", | |
"learning rate", | |
"linear regression", | |
"low resolution", | |
"lp relaxation", | |
"low rank" | |
], | |
"TPR": [ | |
"true positive rate", | |
"tensor product representation" | |
], | |
"RR": [ | |
"round robin", | |
"recurrent refinement", | |
"relevance rate", | |
"relative ranking", | |
"reverse reachable" | |
], | |
"LM": [ | |
"language model", | |
"logarithmically scaled magnitude", | |
"lagrange multiplier method", | |
"levenberg macquardt" | |
], | |
"OS": [ | |
"overlap success", | |
"output stride", | |
"orientation score", | |
"operating system" | |
], | |
"SRC": [ | |
"sdn ran controller", | |
"spearsman 's rank correlation", | |
"sparse representation classification" | |
], | |
"LTE": [ | |
"long term evolution", | |
"language transmission engine" | |
], | |
"HN": [ | |
"heterogeneous network", | |
"hierarchical network" | |
], | |
"PI": [ | |
"prediction intervals", | |
"provider independent", | |
"power iteration", | |
"purchase intention" | |
], | |
"PNN": [ | |
"probabilistic neural network", | |
"product - based neural network", | |
"progressive neural networks" | |
], | |
"RDF": [ | |
"resource description framework", | |
"rate distortion function", | |
"random decision forests" | |
], | |
"GDP": [ | |
"gross domestic product", | |
"generalized differential privacy", | |
"good distribution practice" | |
], | |
"SO": [ | |
"smart object", | |
"stack overflow", | |
"surrogate outcomes" | |
], | |
"SMP": [ | |
"security management provider", | |
"symmetric multi processor", | |
"stable marriage problem" | |
], | |
"DC": [ | |
"distributed control", | |
"dublin core", | |
"direct current", | |
"dual connectivity", | |
"disorder constraints", | |
"disconnected components", | |
"direct click", | |
"descriptive complexity", | |
"data consistency", | |
"datacenter", | |
"dice coefficient", | |
"deep convolutional", | |
"deficit counter", | |
"dynamic cluster" | |
], | |
"ADP": [ | |
"approximate dynamic programming", | |
"absolute derivative privacy" | |
], | |
"ES": [ | |
"energy storage", | |
"end systolic", | |
"evolutionary strategies", | |
"encrypted sharing", | |
"event synchronization", | |
"enterprise storage", | |
"entropy search", | |
"elevation angle spread", | |
"exhaustive search", | |
"external search", | |
"embedding weight sharing" | |
], | |
"TR": [ | |
"temporal resolution", | |
"tone reservation" | |
], | |
"AOD": [ | |
"average outage duration", | |
"angle opening distance" | |
], | |
"AM": [ | |
"arithmetic mean", | |
"activation maximization", | |
"alternating minimization" | |
], | |
"QP": [ | |
"quadratic programming", | |
"quantum pareto", | |
"quantisation parameter" | |
], | |
"TCP": [ | |
"test case prioritization", | |
"top concept 's popularity", | |
"transductive conformal prediction", | |
"transmission control protocol" | |
], | |
"SDD": [ | |
"stanford drone dataset", | |
"standard desktop display" | |
], | |
"VAT": [ | |
"virtual adversarial training", | |
"visceral adipose tissue" | |
], | |
"GP": [ | |
"gaussian process", | |
"geometric programming" | |
], | |
"SAD": [ | |
"spectral angle distance", | |
"speech activity detection" | |
], | |
"OI": [ | |
"original images", | |
"operational intensity" | |
], | |
"SR": [ | |
"stacked refinement", | |
"secrecy rate", | |
"segment representation", | |
"spatial resolution", | |
"success rate", | |
"super resolution", | |
"speech recognition", | |
"small resolution", | |
"strategic rationale", | |
"systematic review" | |
], | |
"SSA": [ | |
"space situational awareness", | |
"static single assignment" | |
], | |
"SPL": [ | |
"sound pressure level", | |
"shortest path length", | |
"standard plane location" | |
], | |
"TP": [ | |
"true positives", | |
"temporal pooler" | |
], | |
"FN": [ | |
"false negatives", | |
"focusing network" | |
], | |
"TN": [ | |
"true negative", | |
"total noise" | |
], | |
"AP": [ | |
"average precision", | |
"access point", | |
"asymptotic preserving", | |
"associated press", | |
"acute pancreatitis", | |
"access part", | |
"affinity propagation" | |
], | |
"DE": [ | |
"dimension estimation", | |
"differential evolution", | |
"dataexplorer", | |
"deterministic equivalent", | |
"data efficiency" | |
], | |
"PAM": [ | |
"partitioning around medoid", | |
"passive acoustic monitoring", | |
"pulse amplitude modulation" | |
], | |
"MGM": [ | |
"markov geographic model", | |
"manifold geometry matching" | |
], | |
"ASR": [ | |
"automatic speech recognition", | |
"average sum rate" | |
], | |
"DL": [ | |
"description length", | |
"deep learning", | |
"dice loss", | |
"description logics", | |
"downlink", | |
"distributed ledger", | |
"depth loss", | |
"dogleg" | |
], | |
"CFG": [ | |
"context free grammar", | |
"control flow graph" | |
], | |
"CP": [ | |
"constraint programming", | |
"cyclic prefic", | |
"clustered placement", | |
"central processor", | |
"canonical polyadic", | |
"completely positive", | |
"constraint problem", | |
"control program", | |
"candecomp / parafac", | |
"conformal prediction", | |
"core periphery" | |
], | |
"LS": [ | |
"local search", | |
"least squares", | |
"logarithmically spaced", | |
"linear systemswe", | |
"location service" | |
], | |
"DP": [ | |
"dynamic programming", | |
"distance precision", | |
"declustered placement", | |
"dirichlet process", | |
"drift - plus penalty", | |
"dropped pronoun", | |
"direct proportion", | |
"differential privacy", | |
"disjunctive programming", | |
"dronemap planner" | |
], | |
"CLP": [ | |
"convergence layer protocol", | |
"coin - or linear program solver" | |
], | |
"SAC": [ | |
"special airworthiness certificate", | |
"soft actor critic" | |
], | |
"HAP": [ | |
"high altitude platform", | |
"hybrid access point" | |
], | |
"MSC": [ | |
"multi - layer same - resolution compressed", | |
"mobile switching center" | |
], | |
"CRM": [ | |
"channel reliability measurement", | |
"counterfactual risk minimization" | |
], | |
"LDOF": [ | |
"large displacement optical flow", | |
"local distance - based outlier factor" | |
], | |
"BA": [ | |
"black and anandan", | |
"binary agreement", | |
"barabasi albert", | |
"bundle adjustment", | |
"balanced accuracy", | |
"bee algorithm" | |
], | |
"MS": [ | |
"modelling simulation", | |
"multiple sclerosis", | |
"mean shift", | |
"missed speech", | |
"main - sequence", | |
"mid stance", | |
"mobile station", | |
"medical sentiment" | |
], | |
"SDP": [ | |
"shortest dependency path", | |
"semi - definite programming", | |
"stable dependencies principle" | |
], | |
"LMF": [ | |
"low - rank multimodal fusion", | |
"lower membership function" | |
], | |
"GAP": [ | |
"global average pooling", | |
"generative adversarial perturbations", | |
"generalized assignment problem", | |
"global average precision" | |
], | |
"BPM": [ | |
"beat per minute", | |
"business process modelling" | |
], | |
"BD": [ | |
"bias disparities", | |
"bjontegaard delta", | |
"block diagonalization", | |
"benders decomposition" | |
], | |
"QA": [ | |
"question answering", | |
"quantum annealing" | |
], | |
"CCC": [ | |
"concordance correlation coefficient", | |
"congruence coefficient correlation" | |
], | |
"RC": [ | |
"rich club", | |
"radon consistency", | |
"reading comprehension", | |
"relation classification", | |
"remote control", | |
"resource control", | |
"recurrent convolution", | |
"radio control", | |
"rate constrained", | |
"red clump", | |
"reservoir computing" | |
], | |
"CI": [ | |
"current iteration", | |
"confidence intervals", | |
"constructive interference", | |
"class imbalance", | |
"conditional independence", | |
"current instruction", | |
"cochlear implant", | |
"continuous integration", | |
"computational intelligence" | |
], | |
"SOA": [ | |
"stimulus onset asynchrony", | |
"service oriented architecture" | |
], | |
"MAT": [ | |
"medication assisted treatment", | |
"motionless analysis of traffic", | |
"multi - fingered adaptive tactile grasping" | |
], | |
"MSD": [ | |
"million song dataset", | |
"modified list sphere decoding", | |
"most significant digit" | |
], | |
"GBM": [ | |
"geometric brownian motion", | |
"gradient boosting machine" | |
], | |
"AS": [ | |
"autonomous system", | |
"angular spread", | |
"adaptive softmax", | |
"ancillary service", | |
"azimuth angle spread", | |
"attention sum", | |
"antenna spacing" | |
], | |
"TD": [ | |
"total difficulty", | |
"time - discrete", | |
"technical debt", | |
"temporal difference", | |
"temporal dimension", | |
"training data", | |
"target dependent", | |
"top - down", | |
"time - domain" | |
], | |
"CPI": [ | |
"consumer price index", | |
"conditional predictive impact" | |
], | |
"RN": [ | |
"relational neighbors", | |
"radical nephrectomy", | |
"relay nodes", | |
"random noise", | |
"radial normalization" | |
], | |
"SN": [ | |
"secondary node", | |
"source node", | |
"spectral normalization" | |
], | |
"RV": [ | |
"random vaccination", | |
"right ventricle", | |
"random voting", | |
"random variable", | |
"resilience vector", | |
"range view" | |
], | |
"AV": [ | |
"acquaintance vaccination", | |
"antivirus", | |
"autonomous vehicle" | |
], | |
"ACR": [ | |
"air change rates", | |
"absolute category rating" | |
], | |
"CN": [ | |
"common neighbours", | |
"clustered networks", | |
"core network", | |
"cognitively normal", | |
"common noun" | |
], | |
"CFA": [ | |
"color filter arrays", | |
"constriction factor approach", | |
"counterfactual future advantage" | |
], | |
"DAS": [ | |
"data availability statement", | |
"disclosure avoidance system" | |
], | |
"HF": [ | |
"hybrid fusion", | |
"high frequency" | |
], | |
"MC": [ | |
"mean - centering", | |
"myocardium", | |
"monte carlo", | |
"multi connectivity", | |
"marginal contribution", | |
"markov chain", | |
"mutual cover", | |
"matrix converter" | |
], | |
"ATE": [ | |
"absolute trajectory error", | |
"average translation error" | |
], | |
"RPE": [ | |
"relative pose error", | |
"retinal pigment epithelium" | |
], | |
"CMS": [ | |
"codeword mixture sampling", | |
"counting monadic second" | |
], | |
"DVS": [ | |
"dynamic vision sensor", | |
"dynamic voltage scaling" | |
], | |
"ED": [ | |
"economic dispatch", | |
"emergency department", | |
"embedded deformation", | |
"euclidean distance", | |
"energy detection" | |
], | |
"APP": [ | |
"australian privacy principles", | |
"a posteriori probability" | |
], | |
"CM": [ | |
"canalizing map", | |
"centroid methods", | |
"confusion matrix", | |
"continental margin", | |
"corporate messaging", | |
"choir mix", | |
"coded modulation" | |
], | |
"SC": [ | |
"sleep cassette", | |
"sum capacity", | |
"steering control", | |
"smallest class", | |
"successive cancellation", | |
"score contextualisation", | |
"self cover", | |
"subset compared", | |
"spectral clustering", | |
"smart contract", | |
"self consistency", | |
"selection combining", | |
"sum capacities", | |
"symmetry condition", | |
"single connectivity", | |
"special case", | |
"spatial crowdsourcing", | |
"strongly connected" | |
], | |
"SW": [ | |
"similarity weight", | |
"sliding window", | |
"small - world" | |
], | |
"RCNN": [ | |
"recurrent convolutional neural network", | |
"region based convolutional neural network" | |
], | |
"ESE": [ | |
"entity set expansion", | |
"extract similar entities" | |
], | |
"GEM": [ | |
"gradient episodic memory", | |
"grid entropy measurement" | |
], | |
"OLS": [ | |
"orthogonal least square", | |
"ordinary least square" | |
], | |
"OSA": [ | |
"opportunistic spectrum access", | |
"obstructive sleep apnoea" | |
], | |
"SF": [ | |
"satisfaction function", | |
"sequential fixing", | |
"scale free", | |
"structure fusion", | |
"small faces", | |
"separable footprints", | |
"state - feedback" | |
], | |
"CH": [ | |
"cluster head", | |
"constraint handling" | |
], | |
"BP": [ | |
"belief propagation", | |
"bin packing", | |
"basis pursuit", | |
"backprop", | |
"back propagation", | |
"backdoor poisoning", | |
"bundle protocol", | |
"best performing" | |
], | |
"LC": [ | |
"latent class", | |
"local conditioning", | |
"line card", | |
"least confidence", | |
"largest class", | |
"land cover", | |
"latent clustering", | |
"lyrics comprehension" | |
], | |
"FTE": [ | |
"foveal tilt effects", | |
"full time employment" | |
], | |
"HT": [ | |
"hough transform", | |
"hoeffding tree" | |
], | |
"SER": [ | |
"symbol error rate", | |
"speaker error rate", | |
"speech emotion recognition" | |
], | |
"BS": [ | |
"base station", | |
"beam search", | |
"brier score", | |
"batch size", | |
"standard beam search", | |
"bayesian sets", | |
"bidirectional similarity" | |
], | |
"BT": [ | |
"best target", | |
"back translation", | |
"bernoulli trial" | |
], | |
"RB": [ | |
"random beamforming", | |
"resource blocks", | |
"rank - based", | |
"reduced basis", | |
"rosi braidotti" | |
], | |
"UD": [ | |
"universal dependencies", | |
"unified distillation" | |
], | |
"GN": [ | |
"gaussian noise", | |
"grid name", | |
"gauss - newton" | |
], | |
"GCNN": [ | |
"graph convolutional neural network", | |
"geodesic convolution neural network" | |
], | |
"GCN": [ | |
"generalised convolutional neural network", | |
"graph convolution networks", | |
"global convolution networks" | |
], | |
"HAN": [ | |
"hierarchical attention network", | |
"heterogeneous attributed network" | |
], | |
"HMP": [ | |
"hierarchical matching pursuit", | |
"hypermutations with mutation potential" | |
], | |
"BPE": [ | |
"byte pair encoding", | |
"backward partial execution" | |
], | |
"ASD": [ | |
"autism spectrum disorders", | |
"average surface distance" | |
], | |
"SWD": [ | |
"sliced wasserstein distance", | |
"semantic web deployment" | |
], | |
"BAM": [ | |
"behance artistic media", | |
"best alignment metric", | |
"bandwidth allocation model" | |
], | |
"SSR": [ | |
"spatial skeleton realignment", | |
"sparse signal recovery", | |
"spectral super - resolution" | |
], | |
"EB": [ | |
"energy buffer", | |
"energy beam" | |
], | |
"SI": [ | |
"satellite imagery", | |
"semantic inpainting" | |
], | |
"AN": [ | |
"artificial noise", | |
"attention network" | |
], | |
"ESC": [ | |
"environment sound classification", | |
"ergodic sum capacity" | |
], | |
"TSP": [ | |
"traveling salesman problem", | |
"triad significance profile" | |
], | |
"LPP": [ | |
"locality preserving projections", | |
"load planning problem" | |
], | |
"ITS": [ | |
"intelligent transportation system", | |
"interrupted time series", | |
"intelligent tutoring systems" | |
], | |
"CST": [ | |
"corticospinal tract", | |
"china standard time" | |
], | |
"CMI": [ | |
"conditional mutual information", | |
"code - mixed index" | |
], | |
"SCA": [ | |
"successive convex approximation", | |
"scatter component analysis", | |
"smart cut algorithm" | |
], | |
"ISP": [ | |
"internet service providers", | |
"image signal processor" | |
], | |
"BNC": [ | |
"british national corpus", | |
"brown news corpus" | |
], | |
"MACS": [ | |
"mean average conceptual similarity", | |
"minimum average conceptual similarity" | |
], | |
"ADA": [ | |
"american diabetes association 's", | |
"adaptive data augmentation" | |
], | |
"DS": [ | |
"delay spread", | |
"direct sharing", | |
"data structure", | |
"data sharing", | |
"differentiated softmax", | |
"dempster - shafer", | |
"detection scores" | |
], | |
"MSA": [ | |
"modern standard arabic", | |
"multilevel splitting algorithm", | |
"multiple sequence alignment" | |
], | |
"DES": [ | |
"dual energy subtraction", | |
"defence equipment support" | |
], | |
"SFC": [ | |
"superposition of functional contours", | |
"service function chaining" | |
], | |
"PLP": [ | |
"perceptual linear prediction", | |
"poisson line process" | |
], | |
"FPR": [ | |
"false positive rate", | |
"fuzzy preference relation" | |
], | |
"BDT": [ | |
"boosted decision trees", | |
"bi - directional domain translation" | |
], | |
"PAP": [ | |
"process arrival pattern", | |
"policy administration point" | |
], | |
"RM": [ | |
"roofline model", | |
"robot middleware", | |
"representation mixing", | |
"resource management" | |
], | |
"EAD": [ | |
"encoded archival description", | |
"exponential absolute distance" | |
], | |
"DCP": [ | |
"deep context prediction", | |
"darwin correspondence project" | |
], | |
"VO": [ | |
"velocity obstacle", | |
"visual odometry" | |
], | |
"ECC": [ | |
"error correcting code", | |
"elliptic curve cryptography" | |
], | |
"ASN": [ | |
"autonomous system number", | |
"average sample number" | |
], | |
"LSA": [ | |
"latent semantic analysis", | |
"licensed shared access" | |
], | |
"SMC": [ | |
"sequential monte carlo", | |
"sliding mode control", | |
"statistical model checking", | |
"secure multiparty computation" | |
], | |
"EO": [ | |
"eyes open", | |
"earth observation" | |
], | |
"EDA": [ | |
"evolutionary distribution algorithm", | |
"exploratory data analysis" | |
], | |
"DRL": [ | |
"deep reinforcement learning", | |
"distributional reinforcement learning" | |
], | |
"PG": [ | |
"policy gradient", | |
"policy generator", | |
"property graph" | |
], | |
"ROM": [ | |
"range of motion", | |
"reduced - order models" | |
], | |
"ICC": [ | |
"intraclass correlation coefficient", | |
"implicit computational complexity" | |
], | |
"MBR": [ | |
"minimum bandwidth regenerating", | |
"minimum bounding rectangle" | |
], | |
"DT": [ | |
"decision tree", | |
"delivery teams" | |
], | |
"RLS": [ | |
"recursive least squares", | |
"regularized least squares", | |
"random local search" | |
], | |
"SP": [ | |
"strictly piecewise", | |
"streaming processors", | |
"set partitioning", | |
"subspace pursuit", | |
"stream processor", | |
"shilling profiles", | |
"semantic parsing", | |
"shortest path", | |
"spatial pooler", | |
"standards poors", | |
"sao paulo", | |
"set point", | |
"splitting problem" | |
], | |
"SL": [ | |
"strictly local", | |
"separation logic", | |
"supervised learning" | |
], | |
"CLS": [ | |
"constrained least squares", | |
"complementary learning systems" | |
], | |
"ARA": [ | |
"adversarial risk analysis", | |
"accumulate repeat accumulate" | |
], | |
"POI": [ | |
"points of interest", | |
"projection of interest" | |
], | |
"RSS": [ | |
"received signal strength", | |
"radio signal strength", | |
"random subcarrier selection" | |
], | |
"CSD": [ | |
"constrained spherical deconvolution", | |
"critical sensor density", | |
"contextual sentence decomposition" | |
], | |
"PN": [ | |
"pixel - wise normalization", | |
"partial nephrectomy" | |
], | |
"PA": [ | |
"provider aggregatable", | |
"philadelphia", | |
"physical access", | |
"peano 's arithmetics", | |
"parallel attention", | |
"preferential attachment", | |
"power allocation", | |
"presburger arithmetic" | |
], | |
"FD": [ | |
"fast dormancy", | |
"finite differences", | |
"fractal dimension", | |
"fully - digital" | |
], | |
"IC": [ | |
"initial contact", | |
"integrated circuit", | |
"independent cascading" | |
], | |
"SPM": [ | |
"statistical parameter mapping", | |
"saliency prediction model", | |
"spatial pyramid matching" | |
], | |
"EMD": [ | |
"earth mover 's distance", | |
"excessive mapping dissolution" | |
], | |
"CRC": [ | |
"cyclic redundancy check", | |
"collaborative representation classification" | |
], | |
"ADN": [ | |
"artifact disentanglement network", | |
"activity driven networks" | |
], | |
"TU": [ | |
"threshold updation", | |
"translation unit" | |
], | |
"OEC": [ | |
"oxford english corpus", | |
"online elliptical clustering" | |
], | |
"BSM": [ | |
"basic skill module", | |
"basic safety messages" | |
], | |
"BNN": [ | |
"bayesian neural networks", | |
"binary neural networks" | |
], | |
"GVR": [ | |
"gradient variance regularizer", | |
"global visual representations" | |
], | |
"SCCs": [ | |
"strongly connected components", | |
"static camera clusters" | |
], | |
"RT": [ | |
"radiation therapy", | |
"retweets", | |
"reparameterization trick", | |
"response time", | |
"ruthes", | |
"random target", | |
"region template" | |
], | |
"RW": [ | |
"reaction wheels", | |
"random walk", | |
"rolling window" | |
], | |
"LV": [ | |
"left ventricle", | |
"las vegas", | |
"large volumetric" | |
], | |
"RG": [ | |
"renormalization group", | |
"riemmanian geometry", | |
"real graphs", | |
"reber grammar" | |
], | |
"AT": [ | |
"asteroidal triple", | |
"adversarial training", | |
"adaptive threshold" | |
], | |
"CCR": [ | |
"correct classification ratio", | |
"cross - document coreference resolution", | |
"correct correction rate" | |
], | |
"GMP": [ | |
"gain minus pain", | |
"global max pooling" | |
], | |
"CBT": [ | |
"children 's book test", | |
"consensus - before - talk" | |
], | |
"DAR": [ | |
"dynamic assignment ratio", | |
"defence application register" | |
], | |
"TSA": [ | |
"temporary scope association", | |
"taobao search advertising", | |
"temporal semantic analysis" | |
], | |
"MI": [ | |
"myocardial infarction", | |
"mutual information", | |
"motor imagery", | |
"mathematical induction" | |
], | |
"PVC": [ | |
"premature ventricular contraction", | |
"passive voltage contrast" | |
], | |
"WT": [ | |
"wavelet transform", | |
"wild type", | |
"whole tumor", | |
"william thackeray" | |
], | |
"AAL": [ | |
"automated anatomical labeling", | |
"ambient assisted living" | |
], | |
"DA": [ | |
"denoised auto - encoder", | |
"data assimilation", | |
"deterministic annealing", | |
"domain adaptation", | |
"data augmentation", | |
"direct assessment", | |
"dialogue acts", | |
"distribution alignment" | |
], | |
"MIR": [ | |
"music information retrieval", | |
"music instrument recognition", | |
"music information research" | |
], | |
"DCT": [ | |
"document creation time", | |
"download completion time", | |
"discrete cosine transformation" | |
], | |
"PLS": [ | |
"partial least square", | |
"physical layer security", | |
"progressive lesion segmentation" | |
], | |
"PC": [ | |
"program counter", | |
"point cloud", | |
"program committee", | |
"principal component" | |
], | |
"CNS": [ | |
"central nervous system", | |
"copenhagen networks study" | |
], | |
"AD": [ | |
"alzheimer 's disease", | |
"automatic differentiation", | |
"audit department", | |
"anomaly detection", | |
"auction distribution", | |
"artificially - degraded", | |
"axial diffusivity" | |
], | |
"PL": [ | |
"path loss", | |
"polarity loss", | |
"programming language", | |
"parallel lexicon", | |
"photoluminescence" | |
], | |
"CMC": [ | |
"cumulative matching characteristic", | |
"crude monte carlo" | |
], | |
"CER": [ | |
"character error rate", | |
"classification error rate", | |
"clustering error rate" | |
], | |
"FE": [ | |
"fire emblem", | |
"finite element", | |
"feature extraction" | |
], | |
"NC": [ | |
"network coding", | |
"normalized correlation", | |
"north carolina", | |
"new classes", | |
"noise clinic", | |
"network centre", | |
"next corollary", | |
"node classification", | |
"news commentary" | |
], | |
"CTC": [ | |
"connectionist temporal classification", | |
"common test conditions" | |
], | |
"ZF": [ | |
"zero forcing", | |
"zero - filled" | |
], | |
"SE": [ | |
"spectral efficiency", | |
"situation entity", | |
"smarteda", | |
"sequential exploring", | |
"software engineering", | |
"strong elimination", | |
"signed error", | |
"speech enhancement", | |
"signal enhancement", | |
"squared exponential", | |
"selective eraser", | |
"small enough", | |
"systems engineering" | |
], | |
"DAC": [ | |
"disk array controller", | |
"distributed admission control" | |
], | |
"GRD": [ | |
"group rotate declustering", | |
"ground range detected" | |
], | |
"ALS": [ | |
"aerial laser scanner", | |
"alternating least squares" | |
], | |
"CE": [ | |
"cross entropy", | |
"contrastive estimation", | |
"context entities", | |
"category embeddings", | |
"context encoder", | |
"crossing event" | |
], | |
"ICA": [ | |
"imperialist competitive algorithm", | |
"independent component analysis" | |
], | |
"WS": [ | |
"weight superiority", | |
"word shape", | |
"word sequence", | |
"write skew" | |
], | |
"SCM": [ | |
"semantic correlation maximization", | |
"spatial compositional model", | |
"scanning capacitance microscopy" | |
], | |
"BF": [ | |
"blind forwarding", | |
"basic feature", | |
"bayes factor", | |
"bilateral filtering", | |
"black females", | |
"binary function", | |
"brute force search", | |
"bayesian filtering" | |
], | |
"PAF": [ | |
"provider - aware forwarding", | |
"plenacoustic function" | |
], | |
"GC": [ | |
"garbage collector", | |
"graph cuts", | |
"graph convolution" | |
], | |
"SIS": [ | |
"sequential importance sampling", | |
"social identification system" | |
], | |
"VC": [ | |
"voice conversion", | |
"virtual classifier" | |
], | |
"PS": [ | |
"prediction shift", | |
"parameter server", | |
"personal storage", | |
"probabilistic serial", | |
"power splitting", | |
"projective simulation", | |
"processor sharing" | |
], | |
"UAS": [ | |
"unlabeled attachment score", | |
"unmanned aircraft systems" | |
], | |
"BI": [ | |
"business intelligence", | |
"bayesian inference", | |
"bilinear interpolation" | |
], | |
"NE": [ | |
"nash equilibrium", | |
"named entity", | |
"nested experiments" | |
], | |
"FM": [ | |
"factorization machines", | |
"formal methods", | |
"feature matching", | |
"flash memory", | |
"forward models", | |
"fowlkes mallows index", | |
"feature map", | |
"f1-measure", | |
"frequency modulation", | |
"finite mixture", | |
"fuzzy measure" | |
], | |
"MRE": [ | |
"mean relative error", | |
"median recovery error" | |
], | |
"BDI": [ | |
"belief , desire , intention", | |
"beck 's depression inventory" | |
], | |
"TE": [ | |
"transformation encoder", | |
"taylor expansion", | |
"transformation error", | |
"temporal expressions" | |
], | |
"APT": [ | |
"anytime parameter - free thresholding", | |
"advanced persistent threat" | |
], | |
"NR": [ | |
"new radio", | |
"nuclear receptor" | |
], | |
"ART": [ | |
"adaptive radix tree", | |
"adaptive resonance theory" | |
], | |
"GM": [ | |
"genetically modified", | |
"gradient magnitude", | |
"graph matching", | |
"generator matrix" | |
], | |
"LB": [ | |
"lower bound", | |
"lovasz bregman" | |
], | |
"IPC": [ | |
"instructions per cycle", | |
"individual pitch control", | |
"international patent classification" | |
], | |
"LT": [ | |
"lomonosov 's turnip", | |
"likelihood test", | |
"linear threshold", | |
"luby transform", | |
"label transfer" | |
], | |
"DOM": [ | |
"document object model", | |
"degrees of measurement" | |
], | |
"ESR": [ | |
"equivalent series resistances", | |
"extended support release" | |
], | |
"PCM": [ | |
"peak current mode", | |
"phase change memory", | |
"permanent customer model" | |
], | |
"IB": [ | |
"imaginary batches", | |
"information bottleneck", | |
"immersed boundary" | |
], | |
"FL": [ | |
"flatten layer", | |
"federated learning", | |
"fixated locations" | |
], | |
"GD": [ | |
"group delay", | |
"gradient descent" | |
], | |
"BPD": [ | |
"baseband phase difference", | |
"basis pursuit denoising" | |
], | |
"SCP": [ | |
"squared cosine proximity", | |
"simultaneous closeness - performance" | |
], | |
"ECN": [ | |
"explicit congestion notification", | |
"edge computing node" | |
], | |
"GRL": [ | |
"gradient reversal layer", | |
"goal - oriented requirement language" | |
], | |
"GS": [ | |
"gold standard", | |
"group sweep", | |
"gauss seidel", | |
"geometric sequence", | |
"genetic search", | |
"google scholar 's" | |
], | |
"IM": [ | |
"instant messaging", | |
"identity mapping", | |
"intensity modulation", | |
"influence maps", | |
"interference margin", | |
"index modulation" | |
], | |
"UI": [ | |
"user interface", | |
"uniform indicator" | |
], | |
"PRR": [ | |
"packet reception rate", | |
"pre - reduced ring" | |
], | |
"DPs": [ | |
"dropped pronouns", | |
"dependency pairs" | |
], | |
"NLM": [ | |
"neural logic machines", | |
"neural language modelling" | |
], | |
"ACC": [ | |
"anomaly correlation coefficient", | |
"accuracy", | |
"adaptive cruise control" | |
], | |
"CG": [ | |
"conjugate gradient", | |
"correspondence grouping", | |
"context - guided attention", | |
"contour generator", | |
"context gating", | |
"chemical graph", | |
"candidate generation" | |
], | |
"DG": [ | |
"distributed generation", | |
"dynamic graph", | |
"discontinuous galerkin", | |
"domain generalization" | |
], | |
"SNP": [ | |
"single nucleotide polymorphisms", | |
"state neighborhood probability" | |
], | |
"MDR": [ | |
"multifactor dimensionality reduction", | |
"message dropping rate" | |
], | |
"CL": [ | |
"cumulative link", | |
"coupling layers", | |
"curriculum learning", | |
"continual learning", | |
"classical logic" | |
], | |
"DIC": [ | |
"directed interval class", | |
"dynamic induction control", | |
"deviance information criterion" | |
], | |
"AEC": [ | |
"accepting end component", | |
"automatic exposure control" | |
], | |
"SGNS": [ | |
"syntactic symmetric pattern", | |
"skip - gram with negative sampling" | |
], | |
"OCC": [ | |
"one class classifier", | |
"output constrained covariance", | |
"open circuit condition" | |
], | |
"AOT": [ | |
"adaptive on time", | |
"adaptively optimised threshold" | |
], | |
"RA": [ | |
"random access", | |
"ring allreduce", | |
"resource allocation", | |
"random attack", | |
"remote attestation", | |
"right atrium" | |
], | |
"PMF": [ | |
"probabilistic matrix factorization", | |
"probability mass function" | |
], | |
"DOE": [ | |
"department of energy", | |
"design of experiment", | |
"diffractive optical element" | |
], | |
"RP": [ | |
"replies", | |
"reciprocal pagerank", | |
"reference point", | |
"random priority", | |
"replacement paths" | |
], | |
"CSP": [ | |
"constraint satisfaction problem", | |
"content security policy", | |
"cloud service providers", | |
"coverage sampling problem", | |
"common spatial patterns" | |
], | |
"PDR": [ | |
"pedestrian dead reckoning", | |
"packet delivery ratio" | |
], | |
"TTI": [ | |
"transmission time interval", | |
"time transmit interval" | |
], | |
"MM": [ | |
"mathematical model", | |
"maximum mark" | |
], | |
"PE": [ | |
"processing element", | |
"portable executable" | |
], | |
"FFT": [ | |
"fast fourier transformation", | |
"feature finding team" | |
], | |
"TDS": [ | |
"taint dependency sequences", | |
"training data set" | |
], | |
"GT": [ | |
"group testing", | |
"generic tool", | |
"ground truth", | |
"graph traversal", | |
"google translate" | |
], | |
"CSS": [ | |
"compressive spectrum sensing", | |
"chirp spread spectrum", | |
"cooperative spectrum sensing", | |
"cascade style sheet" | |
], | |
"IV": [ | |
"initialization vector", | |
"intersection viewer" | |
], | |
"OF": [ | |
"optical flow", | |
"objective function" | |
], | |
"VFC": [ | |
"vehicular fog computing", | |
"vector filed consensus" | |
], | |
"TBS": [ | |
"transport block sizes", | |
"terrestrial base station" | |
], | |
"SEP": [ | |
"separator", | |
"symbol error probability" | |
], | |
"BR": [ | |
"boundary refinement", | |
"binary relevance", | |
"bug reports", | |
"belief revision", | |
"best response", | |
"bone region" | |
], | |
"RWA": [ | |
"random walker algorithm", | |
"right wing authoritarianism", | |
"recurrent weighted average" | |
], | |
"DCI": [ | |
"downlink control information", | |
"downlink control indicator" | |
], | |
"RE": [ | |
"resource elements", | |
"relation extraction", | |
"renewable energy", | |
"requirements elicitation", | |
"referring expression" | |
], | |
"PDF": [ | |
"probability density function", | |
"portable document format", | |
"primary distribution format" | |
], | |
"PAT": [ | |
"perform adversarial training", | |
"process arrival time" | |
], | |
"SIC": [ | |
"successive interference cancellation", | |
"static induction control", | |
"self interference cancellation" | |
], | |
"DFA": [ | |
"direct feedback alignment", | |
"deterministic finite automaton" | |
], | |
"IEC": [ | |
"information embedding cost", | |
"international electrotechnical commission" | |
], | |
"IAN": [ | |
"introspective adversarial network", | |
"interference as noise" | |
], | |
"WN": [ | |
"weak normalization", | |
"weight normalization" | |
], | |
"TTP": [ | |
"trusted third party", | |
"total transmit power" | |
], | |
"SSM": [ | |
"state space model", | |
"statistical shape modeling" | |
], | |
"WSI": [ | |
"whole slide image", | |
"word sense induction" | |
], | |
"CDA": [ | |
"concurrent dialogue acts", | |
"christen democratisch appel", | |
"canonical discriminant analysis", | |
"continuous decomposition analysis" | |
], | |
"BL": [ | |
"black level subtraction", | |
"bayesian learning" | |
], | |
"NSS": [ | |
"normalized scan - path saliency", | |
"non - local self similar" | |
], | |
"VSI": [ | |
"virtual switch instances", | |
"variational system identification", | |
"voltage source inverter" | |
], | |
"RRC": [ | |
"rank residual constraint", | |
"radio resource control" | |
], | |
"ASF": [ | |
"apache software foundation", | |
"african swine fever" | |
], | |
"AKS": [ | |
"almost known sets", | |
"asimmetric kernel scaling" | |
], | |
"ICE": [ | |
"intrinsic control error", | |
"interactive connectivity establishment" | |
], | |
"PDP": [ | |
"partial dependence plots", | |
"product display page", | |
"policy decision point" | |
], | |
"RD": [ | |
"real data", | |
"residual denoiser", | |
"research and development", | |
"relative difference", | |
"reciprocal degree" | |
], | |
"IT": [ | |
"iris thickness", | |
"immediate threshold", | |
"inferior temporal", | |
"image translation" | |
], | |
"CBP": [ | |
"coprime blur pairs", | |
"compact bilinear pooling" | |
], | |
"RFS": [ | |
"random finite set", | |
"rain fog snow" | |
], | |
"IFD": [ | |
"indian face database", | |
"icelandic frequency dictionary" | |
], | |
"CDR": [ | |
"call detail records", | |
"critical design review", | |
"clock difference relations" | |
], | |
"DBP": [ | |
"discrete base problem", | |
"determinisable by pruning", | |
"digital back propagation" | |
], | |
"BLE": [ | |
"bluetooth low energy", | |
"bilingual lexicon extraction" | |
], | |
"RTF": [ | |
"region templates framework", | |
"real time factor" | |
], | |
"BSP": [ | |
"binary space partitioning", | |
"bulk synchronous parallel" | |
], | |
"RCA": [ | |
"root certificate authority", | |
"ripple carry adder", | |
"root cause analysis", | |
"reverse classification accuracy" | |
], | |
"LBP": [ | |
"local binary pattern", | |
"loopy belief propagation" | |
], | |
"LML": [ | |
"lifelong metric learning", | |
"log marginal likelihood", | |
"lifelong machine learning" | |
], | |
"ADF": [ | |
"anisotropic diffusion filter", | |
"automatically defined function" | |
], | |
"DML": [ | |
"data modification layer", | |
"declarative ml language" | |
], | |
"BQ": [ | |
"basic question", | |
"bayesian quadrature" | |
], | |
"LA": [ | |
"logical access", | |
"layout analysis", | |
"left atrium", | |
"location area" | |
], | |
"NPR": [ | |
"near perfect reconstruction", | |
"normalized probabilistic rand" | |
], | |
"PEP": [ | |
"permission enforcement point", | |
"policy enforcement point" | |
], | |
"PPT": [ | |
"pignistic probability transformation", | |
"privacy preserving techniques" | |
], | |
"DMA": [ | |
"direct memory access", | |
"dynamic mechanical analysis", | |
"data market austria" | |
], | |
"SDF": [ | |
"side - stream dark field", | |
"signed distance function", | |
"signed distance field" | |
], | |
"SU": [ | |
"symmetric uncertainty", | |
"secondary user" | |
], | |
"RPG": [ | |
"relevance proximity graph", | |
"robust principal graph" | |
], | |
"PIT": [ | |
"permutation invariant training", | |
"pending interest table" | |
], | |
"CB": [ | |
"code block", | |
"content - based", | |
"circular buffered", | |
"compression benchmark", | |
"causal box" | |
], | |
"DMF": [ | |
"dynamic mode factorization", | |
"drone - cell management frame" | |
], | |
"DBA": [ | |
"dtw barycenter averaging", | |
"deterministic buchi automaton" | |
], | |
"SRL": [ | |
"semantic role labeling", | |
"state representation learning", | |
"statistical relational learning" | |
], | |
"RQ": [ | |
"research question", | |
"reformulated queries" | |
], | |
"SBM": [ | |
"stochastic block model", | |
"sequential monte carlo", | |
"standard bit mutations", | |
"shape boltzmann machine" | |
], | |
"FJ": [ | |
"friendly jamming", | |
"featherweight java" | |
], | |
"SPF": [ | |
"structure propagation fusion", | |
"shortest path forest" | |
], | |
"HM": [ | |
"harmonic mean", | |
"hybrid model" | |
], | |
"LOD": [ | |
"linked open data", | |
"level of detail" | |
], | |
"GTD": [ | |
"grasp type detection", | |
"grasp type dataset" | |
], | |
"TCR": [ | |
"trap control register", | |
"transductive cascaded regression" | |
], | |
"LE": [ | |
"low energy", | |
"label equivalence" | |
], | |
"LCS": [ | |
"longest common subsequence", | |
"local causal states" | |
], | |
"FAST": [ | |
"features from accelerated segment test", | |
"file and storage technologies" | |
], | |
"SSE": [ | |
"streaming simd extensions", | |
"spherical semantic embedding" | |
], | |
"DSR": [ | |
"dynamic sparse reparameterization", | |
"dynamic source routing" | |
], | |
"GPM": [ | |
"graph pattern matching", | |
"matchinggraph pattern matching" | |
], | |
"VR": [ | |
"virtual reality", | |
"visibility region", | |
"vigilance reward" | |
], | |
"MPA": [ | |
"music performance analysis", | |
"message passing algorithm" | |
], | |
"SAN": [ | |
"semantic alignment network", | |
"saturation analysis", | |
"subject alternate name", | |
"stacked attention network", | |
"self attention network" | |
], | |
"SSI": [ | |
"subspace system identification", | |
"social system identification", | |
"software sustainability institute" | |
], | |
"TDM": [ | |
"technical debt management", | |
"temporal difference model", | |
"time division multiplexing" | |
], | |
"NS": [ | |
"network science", | |
"negative sampling", | |
"neutron star" | |
], | |
"SUs": [ | |
"secondary users", | |
"spectrum usage" | |
], | |
"PBS": [ | |
"primary base station", | |
"public broadcasting service" | |
], | |
"PCL": [ | |
"positive coalgebraic logics", | |
"point cloud library", | |
"path consistency learning" | |
], | |
"DMN": [ | |
"dynamic memory network", | |
"default mode network" | |
], | |
"SFM": [ | |
"social force model", | |
"structural factorization machine", | |
"structure from motion" | |
], | |
"GF": [ | |
"guided filtering", | |
"gabor filter" | |
], | |
"CDP": [ | |
"centralized differential privacy", | |
"classical dynamic programming" | |
], | |
"SAM": [ | |
"semi - autonomous machine", | |
"speaker - addressee model", | |
"search of associative memory", | |
"self - assessment manikin" | |
], | |
"TM": [ | |
"tone mapping", | |
"teacher mark", | |
"turing machine" | |
], | |
"DADA": [ | |
"distributed affinity dual approximation", | |
"dual adversarial domain adaptation" | |
], | |
"DEC": [ | |
"deep embedded clustering", | |
"dense - captioning event" | |
], | |
"CNL": [ | |
"controlled natural language", | |
"certain natural language" | |
], | |
"PIN": [ | |
"proposal indexing network", | |
"phrase indexing network" | |
], | |
"USD": [ | |
"unmet system demand", | |
"unambiguous state discrimination" | |
], | |
"HC": [ | |
"healthy control", | |
"hill - climbing", | |
"hierarchical classification" | |
], | |
"GSP": [ | |
"generalized second price", | |
"global statistics pooling" | |
], | |
"ESS": [ | |
"effective sample size", | |
"evolutionary stable strategies" | |
], | |
"LDS": [ | |
"low density spreading", | |
"linear dynamical system" | |
], | |
"ARD": [ | |
"adversarially robust distillation", | |
"automatic relevance determination", | |
"accelerated robust distillation" | |
], | |
"NL": [ | |
"network lifetime", | |
"natural language" | |
], | |
"ILS": [ | |
"incomplete lineage sorting", | |
"iterated local search" | |
], | |
"AML": [ | |
"adversarial machine learning", | |
"actor modeling language" | |
], | |
"MN": [ | |
"mobile network", | |
"master node", | |
"memory networks", | |
"mobile node" | |
], | |
"SED": [ | |
"soft edit distance", | |
"sound event detection", | |
"standard edit distance" | |
], | |
"UDP": [ | |
"user datagram protocol", | |
"universal dependency parse" | |
], | |
"SSL": [ | |
"structural sparsity learning", | |
"scleral spur location", | |
"semi supervised learning" | |
], | |
"SCR": [ | |
"scratch", | |
"sparse compositional regression", | |
"skin conductance response" | |
], | |
"CKA": [ | |
"concurrent kleene algebra", | |
"centered kernel alignment" | |
], | |
"RDS": [ | |
"relational database service", | |
"running digital sum" | |
], | |
"WF": [ | |
"white females", | |
"weighted fusion" | |
], | |
"TBB": [ | |
"tor browser bundle", | |
"threading building blocks" | |
], | |
"DI": [ | |
"document index", | |
"dyadic indicator", | |
"direct inspection", | |
"dependency injection" | |
], | |
"TPD": [ | |
"turbo product decoder", | |
"total project delay" | |
], | |
"NIC": [ | |
"neural image caption", | |
"network interface card" | |
], | |
"DSA": [ | |
"data science and analytics", | |
"digital signature algorithm" | |
], | |
"MRS": [ | |
"magnetic resonance spectroscopy", | |
"multiset rewriting systems" | |
], | |
"CO": [ | |
"context - only attention", | |
"carbon - oxygen" | |
], | |
"NSP": [ | |
"neural sequence prediction", | |
"next sentence prediction" | |
], | |
"FG": [ | |
"favoured granted", | |
"filter gate" | |
], | |
"BSC": [ | |
"binary symmetric channel", | |
"base station controller" | |
], | |
"BSD": [ | |
"blind spot detection", | |
"berkeley segmentation dataset" | |
], | |
"FPS": [ | |
"frame per second", | |
"false projection selection" | |
], | |
"SPS": [ | |
"signal processing systems", | |
"surcharge pricing scheme", | |
"signal probability skey" | |
], | |
"PPE": [ | |
"per - pixel - error", | |
"predictive performance equation" | |
], | |
"EMS": [ | |
"elevated mean scan statistic", | |
"event management system", | |
"elevated mean scan" | |
], | |
"FAR": [ | |
"false acceptance rate", | |
"flow annotation replanning" | |
], | |
"CFD": [ | |
"computational fluid dynamics", | |
"carrier frequency difference" | |
], | |
"DSO": [ | |
"direct sparse odometry", | |
"distribution system operator" | |
], | |
"DTP": [ | |
"difference target propagation", | |
"dynamic trajectory predictor" | |
], | |
"GI": [ | |
"gradient initialization", | |
"graph isomorphism" | |
], | |
"SSS": [ | |
"staggered sample selection", | |
"stochastically stable states" | |
], | |
"DST": [ | |
"dialogue state tracker", | |
"discrete sine transform" | |
], | |
"ID": [ | |
"item description", | |
"information decoding", | |
"input data", | |
"interleaved declustering" | |
], | |
"FEA": [ | |
"factored evolutionary algorithms", | |
"finite element analysis" | |
], | |
"SB": [ | |
"systems biology", | |
"symmetry breaking" | |
], | |
"SG": [ | |
"skip gram", | |
"stochastic gradient" | |
], | |
"CLT": [ | |
"central limit theorem", | |
"cognitive load theory" | |
], | |
"MET": [ | |
"michigan english test", | |
"multi - edge type" | |
], | |
"GSR": [ | |
"geographic source routing", | |
"group sparsity residual", | |
"group sparse representation" | |
], | |
"GPR": [ | |
"gaussian process regression", | |
"gamma passing rate" | |
], | |
"STA": [ | |
"static timing analysis", | |
"super - twisting algorithms" | |
], | |
"HMC": [ | |
"hybrid monte carlo", | |
"hamiltonian monte carlo" | |
], | |
"LSM": [ | |
"laplacian - based shape matching", | |
"lock sweeping method" | |
], | |
"IO": [ | |
"inverse optimization", | |
"iterative optimization", | |
"interacting object" | |
], | |
"LAP": [ | |
"low altitude platform", | |
"linear assignment problem" | |
], | |
"LTP": [ | |
"licklider transmission protocol", | |
"long term potentiation" | |
], | |
"GMS": [ | |
"grid - based motion statistics", | |
"gaussian material synthesis" | |
], | |
"DCM": [ | |
"dynamics canalization map", | |
"discontinuous conduction mode", | |
"deep choice model", | |
"discrete choice models", | |
"device configuration manager" | |
], | |
"MGE": [ | |
"minimum generation error", | |
"multi - granularity embedding" | |
], | |
"MCS": [ | |
"maximal consistent set", | |
"modulation and coding scheme", | |
"maximum cardinality search" | |
], | |
"OP": [ | |
"orthogonal procrustes", | |
"old persian", | |
"outage probability", | |
"original precision", | |
"orienteering problem" | |
], | |
"CWE": [ | |
"common weakness enumeration", | |
"character - enhanced word embedding", | |
"chinese word embeddings" | |
], | |
"MSR": [ | |
"minimum storage regenerating", | |
"mining software repositories" | |
], | |
"PT": [ | |
"piecewise -testable", | |
"physical therapy", | |
"productive time", | |
"proof time" | |
], | |
"PBRT": [ | |
"physically based renderer", | |
"physically based ray tracing" | |
], | |
"NHS": [ | |
"national health service", | |
"nurses ' health study" | |
], | |
"LSC": [ | |
"leicester scientific corpus", | |
"long skip connections" | |
], | |
"STL": [ | |
"single task learning", | |
"signal temporal logic", | |
"standard template library" | |
], | |
"SBS": [ | |
"swedish blog sentences", | |
"small - cell base stations" | |
], | |
"PAA": [ | |
"piecewise aggregation approximation", | |
"principal axis analysis" | |
], | |
"CPS": [ | |
"common phone set", | |
"current population survey" | |
], | |
"MVP": [ | |
"mitral valve prolapse", | |
"million veterans program" | |
], | |
"MPB": [ | |
"matrix pair beamformer", | |
"modified poisson blending" | |
], | |
"MIS": [ | |
"multiple importance sampling", | |
"maximal independent set" | |
], | |
"LF": [ | |
"large faces", | |
"late fusion", | |
"line feeds" | |
], | |
"SOC": [ | |
"security operations center", | |
"standard occupation classification", | |
"state of charge" | |
], | |
"IVR": [ | |
"interactive voice response", | |
"immersive virtual reality" | |
], | |
"IA": [ | |
"intent analyst", | |
"interval analysis", | |
"incremental approximation", | |
"interference alignment" | |
], | |
"IFT": [ | |
"information foraging theory", | |
"information flow tracking" | |
], | |
"ARS": [ | |
"augmented random search", | |
"addressee and response selection" | |
], | |
"SCS": [ | |
"statistical compressed sensing", | |
"shortest common superstring", | |
"spoken conversational search", | |
"sub - carrier spacing" | |
], | |
"SQA": [ | |
"semantic question answering", | |
"spoken question answering" | |
], | |
"AWE": [ | |
"averaged word embeddings", | |
"address windowing extensions" | |
], | |
"TAS": [ | |
"transverse abdominal section", | |
"transmit antenna selection" | |
], | |
"IE": [ | |
"information extraction", | |
"intelligent element", | |
"integral equation" | |
], | |
"CEM": [ | |
"causal effect map", | |
"circled entropy measurement", | |
"cross entropy methods" | |
], | |
"UM": [ | |
"user model", | |
"upsampling module" | |
], | |
"ILM": [ | |
"internal limiting membrane", | |
"information lifecycle management" | |
], | |
"RGB": [ | |
"red , green , blue", | |
"red giant branch" | |
], | |
"CSG": [ | |
"cumulative spectral gradient", | |
"cost sharing game" | |
], | |
"PPC": [ | |
"peak power contract", | |
"pay per click" | |
], | |
"EMG": [ | |
"eight medical grade", | |
"electromyograph" | |
], | |
"DSP": [ | |
"digital signal processing", | |
"discrete sequence production" | |
], | |
"MVF": [ | |
"maximum voice frequency", | |
"matching vector families" | |
], | |
"FDA": [ | |
"fisher 's discriminant analysis", | |
"functional data analysis" | |
], | |
"TDA": [ | |
"topological data analysis", | |
"targeted degree - based attack" | |
], | |
"ERB": [ | |
"equivalent rectangular bandwidth", | |
"enhanced residual block" | |
], | |
"EHS": [ | |
"enhanced hybrid simultaneous", | |
"enhanced hybrid swipt protocol" | |
], | |
"SIR": [ | |
"sequential importance resampling", | |
"source to interferences ratio" | |
], | |
"EMF": [ | |
"explicit matrix factorization", | |
"eclipse modeling framework", | |
"electromagnetic fields" | |
], | |
"DLS": [ | |
"derandomized local search", | |
"depth - limited search" | |
], | |
"AIDA": [ | |
"analytic imaging diagnostics arena", | |
"atomic , independent , declarative , and absolute" | |
], | |
"NTM": [ | |
"neural turing machine", | |
"neural topic model" | |
], | |
"DNS": [ | |
"domain name system", | |
"domain name service" | |
], | |
"EF": [ | |
"expedited forwarding", | |
"ejection fraction", | |
"error feedback" | |
], | |
"MTC": [ | |
"movie triplets corpus", | |
"machine type communications" | |
], | |
"ISM": [ | |
"interactive skill modules", | |
"industrial , scientific and medical" | |
], | |
"PTS": [ | |
"partial transmit sequences", | |
"public transportation system" | |
], | |
"PDT": [ | |
"pulse discrete time", | |
"poisson delaunay tessellations" | |
], | |
"PWM": [ | |
"pulse width modulation", | |
"partial weighted matching" | |
], | |
"GCD": [ | |
"graphlet correlation distance", | |
"greatest common divisor" | |
], | |
"CCG": [ | |
"calling contexts graphs", | |
"combinatory categorial grammar", | |
"chromatic correction gratings" | |
], | |
"MCP": [ | |
"mean closest points", | |
"matern cluster process" | |
], | |
"OR": [ | |
"optic radiation", | |
"operations research", | |
"opportunistic relaying" | |
], | |
"DPN": [ | |
"dual path network", | |
"deep pyramid network" | |
], | |
"LTT": [ | |
"lunar transfer trajectory", | |
"locally threshold testable" | |
], | |
"MED": [ | |
"minimal edit distance", | |
"multimedia event detection" | |
], | |
"FER": [ | |
"frame error rate", | |
"facial expression recognition" | |
], | |
"AE": [ | |
"autoencoder", | |
"associative experiment", | |
"absolute error", | |
"answer extraction" | |
], | |
"BPP": [ | |
"bits per pixel", | |
"binomial point process" | |
], | |
"APD": [ | |
"average perpendicular distance", | |
"artifact pyramid decoding" | |
], | |
"SEM": [ | |
"scanning electron microscopy", | |
"squared entropy measurement", | |
"simple event model" | |
], | |
"PTM": [ | |
"point - to - multipoint", | |
"persistent turing machine" | |
], | |
"CWT": [ | |
"continuous wavelet transform", | |
"complex wavelet transform" | |
], | |
"TA": [ | |
"transmission antennas", | |
"threshold algorithm" | |
], | |
"HOG": [ | |
"histogram of gradients", | |
"histogram of oriented gradient" | |
], | |
"NCE": [ | |
"normalized cumulative entropy", | |
"noise contrastive estimation" | |
], | |
"EP": [ | |
"entrance pupil", | |
"exponent parikh", | |
"efficient path", | |
"evolutionary programming", | |
"europarl" | |
], | |
"COP": [ | |
"correlated orienteering problem", | |
"centralized optimization problem" | |
], | |
"QMA": [ | |
"quantitative myotonia assessment", | |
"quantum merlin arthur" | |
], | |
"MRT": [ | |
"minimum risk training", | |
"maximum ratio transmission" | |
], | |
"VCC": [ | |
"vibrational coupled cluster", | |
"vehicular cloud computing" | |
], | |
"RIC": [ | |
"restricted isometry constant", | |
"risk inflation criterion" | |
], | |
"MV": [ | |
"mitral valve", | |
"memory vector" | |
], | |
"OCT": [ | |
"optical coherence tomography", | |
"odd cycle transversal" | |
], | |
"OA": [ | |
"open access", | |
"ocular artifacts", | |
"orthogonal array" | |
], | |
"TBA": [ | |
"targeted betweenness - based attack", | |
"tailor based allocation" | |
], | |
"IDE": [ | |
"integrated development environment", | |
"interprocedural distributive environment" | |
], | |
"DCH": [ | |
"dynamic competition hypothesis", | |
"discriminant cross - modal hashing" | |
], | |
"GAM": [ | |
"generalized additive models", | |
"generative adversarial metric" | |
], | |
"TVD": [ | |
"total variation diminishing", | |
"threshold voltage defined" | |
], | |
"RUM": [ | |
"random utility modelwe", | |
"random utility maximization" | |
], | |
"TRI": [ | |
"temporal random indexing", | |
"toyota research institute" | |
], | |
"QR": [ | |
"quantile regression", | |
"quadruple range" | |
], | |
"MB": [ | |
"motion blurring", | |
"model - based", | |
"maximal biclique" | |
], | |
"AFC": [ | |
"atomic function computation", | |
"automated fare collection(afc", | |
"automatic fact checking" | |
], | |
"PSL": [ | |
"power service layer", | |
"probabilistic soft logic" | |
], | |
"RPL": [ | |
"recurrent power law", | |
"routing protocol for low - power and lossy networks" | |
], | |
"SPAM": [ | |
"subtractive pixel adjacency matrix", | |
"state preparation and measurement errors" | |
], | |
"PSM": [ | |
"patient side manipulator", | |
"precoding - aided spatial modulation" | |
], | |
"NI": [ | |
"new instances", | |
"neat image", | |
"national instruments", | |
"noun incorporation", | |
"network interface" | |
], | |
"OPF": [ | |
"optimal power flow", | |
"optimal pareto front" | |
], | |
"DTN": [ | |
"delay tolerant networks", | |
"domain transfer network", | |
"disruption tolerant networking" | |
], | |
"PVI": [ | |
"parabolic variational inequality", | |
"perpendicular vegetation index" | |
], | |
"ERR": [ | |
"expected reciprocal rank", | |
"exact recovery ratio" | |
], | |
"HI": [ | |
"hubert 's index", | |
"histogram intersection" | |
], | |
"TCA": [ | |
"temporal concept analysis", | |
"task component architecture" | |
], | |
"NUC": [ | |
"normalized uniformity coefficient", | |
"next utterance classification" | |
], | |
"OCM": [ | |
"oz computation model", | |
"original component manufacturers" | |
], | |
"CCP": [ | |
"cross conformal prediction", | |
"convex - concave procedure" | |
], | |
"JD": [ | |
"joint decoding", | |
"joint diagonalization" | |
], | |
"LDE": [ | |
"local discriminant embedding", | |
"learnable dictionary encoding" | |
], | |
"UC": [ | |
"universal composability", | |
"unit commitment" | |
], | |
"CPD": [ | |
"concave points detection", | |
"coherent point drift", | |
"coal mine disaster" | |
], | |
"HDT": [ | |
"header dictionary triple", | |
"header , dictionary , triples" | |
], | |
"SSC": [ | |
"shapley share coefficient", | |
"sparse subspace clustering", | |
"similarity sensitive coding" | |
], | |
"PDM": [ | |
"pulse density modulated", | |
"probability distribution matrix" | |
], | |
"UCM": [ | |
"use case map", | |
"ultrametric contour map" | |
], | |
"ZTD": [ | |
"zenith total delay", | |
"zenithal tropospheric delays" | |
], | |
"FCA": [ | |
"formal concept analysis", | |
"forward capacity auctions" | |
], | |
"BU": [ | |
"bottom - up", | |
"bandwidth units" | |
], | |
"BCL": [ | |
"boolean coalgebraic logics", | |
"bilateral convolutional layers" | |
], | |
"AQG": [ | |
"analyze questions generated", | |
"automatic question generation" | |
], | |
"CSE": [ | |
"cumulative spectrum energy", | |
"common subexpression elimination" | |
], | |
"MRD": [ | |
"mean rank difference", | |
"maximal ratio diversity" | |
], | |
"NEM": [ | |
"net energy metering", | |
"new economy movement" | |
], | |
"CLI": [ | |
"command line interface", | |
"cuneiform language identification" | |
], | |
"MPCA": [ | |
"mobility prediction clustering algorithm", | |
"multi - linear principal components analysis" | |
], | |
"QF": [ | |
"query fusion", | |
"quality factor", | |
"quadratic form" | |
], | |
"BOA": [ | |
"butterfly optimization algorithm", | |
"bilevel optimization algorithm" | |
], | |
"HP": [ | |
"high prr", | |
"hawkes processes" | |
], | |
"CAA": [ | |
"civil aviation authority", | |
"clump assignment array" | |
], | |
"ACI": [ | |
"adjacent channel interference", | |
"artificial collective intelligence" | |
], | |
"OBS": [ | |
"optical burst - switched", | |
"optimal brain surgeon" | |
] | |
} |