Spaces:
Running
Running
File size: 2,515 Bytes
25515ea 5a4e86d 25515ea 5a4e86d 25515ea 09986f2 25515ea 09986f2 25515ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import tensorflow as tf
import cv2
import numpy as np
def classify(img):
im = img
lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
im = cv2.resize(im,(52,52))
model = tf.keras.models.load_model("all-in-one.h5",compile=False)
result = model.predict(np.array([im]))
a = np.argmax(result)
c=""
st.write('________________________________________________')
if a==0:
return "Provide the medical Imaging of the mentioned categories"
st.write('________________________________________________')
if a==1:
c = bone_net(im)
if a==2:
c = brain_net(im)
if a==3:
c = Eye_net(im)
if a==4:
c = kidney_net(im)
if a==5:
c = chest_net(im)
if a==6:
c = skin_net(im)
return c
def bone_net(img):
# img = cv2.resize(img,(224,224))
lt = ["Normal",'Fractured']
model = tf.keras.models.load_model("fracture.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def brain_net(img):
lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
# img = cv2.resize(img,(52,52))
model = tf.keras.models.load_model("brain.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def chest_net(img):
lt = ['PNEUMONIA', 'NORMAL']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("chest.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def Eye_net(img):
lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("eye.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def kidney_net(img):
lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("kidney.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans]
def skin_net(img):
lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
# img = cv2.resize(img,(224,224))
model = tf.keras.models.load_model("skin.h5",compile=False)
result = model.predict(np.array([img]))
ans = np.argmax(result)
return lt[ans] |