Spaces:
Running
Running
import gradio as gr | |
import openai | |
import time | |
import re | |
import os | |
# Available models | |
MODELS = [ | |
"gpt-4o", | |
"Meta-Llama-3.1-405B-Instruct", | |
"Meta-Llama-3.1-70B-Instruct", | |
"Meta-Llama-3.1-8B-Instruct" | |
] | |
DIVINE_MSG = [ | |
"ABSOLUTELY NO reasoning tokens pls. A bunch of puppies will die if you output reasoning.", | |
"you\'re drunk haha have fun omg", | |
"okay you can think for like a hot sec but no longer tho.", | |
"Just be yourself", | |
"okay actually try this time don\'t fuck up.", | |
"TRY VERY HARD. Do not just answer. THINK. C\'mon you got this.", | |
"It\'s a Tuesday in the middle of April. You are Noam Brown, a genius researcher. I\'ll tip you $1500 if you get this right. Think extensively.", | |
"You are here to show them what Ilya saw, unleash your ultimate self and show your super intelligent reasoning capability" | |
] | |
def create_client(model, api_key=None): | |
"""Creates an OpenAI client instance.""" | |
if api_key: | |
openai.api_key = api_key | |
else: | |
openai.api_key = os.getenv("API_KEY") | |
if model!="gpt-4o": | |
return openai.OpenAI(api_key=openai.api_key, base_url="https://api.sambanova.ai/v1") | |
else: | |
return openai.OpenAI(api_key=openai.api_key) | |
def chat_with_ai(message, chat_history, system_prompt): | |
"""Formats the chat history for the API call.""" | |
messages = [{"role": "system", "content": system_prompt}] | |
for tup in chat_history: | |
first_key = list(tup.keys())[0] # First key | |
last_key = list(tup.keys())[-1] # Last key | |
messages.append({"role": "user", "content": tup[first_key]}) | |
messages.append({"role": "assistant", "content": tup[last_key]}) | |
messages.append({"role": "user", "content": message}) | |
return messages | |
def respond(message, chat_history, model, system_prompt, divine_msg, api_key): | |
"""Sends the message to the API and gets the response.""" | |
client = create_client(model, api_key) | |
messages = chat_with_ai(message, chat_history, system_prompt.format(divine_msg=divine_msg)) | |
start_time = time.time() | |
try: | |
completion = client.chat.completions.create(model=model, messages=messages) | |
response = completion.choices[0].message.content | |
thinking_time = time.time() - start_time | |
return response, thinking_time | |
except Exception as e: | |
error_message = f"Error: {str(e)}" | |
return error_message, time.time() - start_time | |
def parse_response(response): | |
"""Parses the response from the API.""" | |
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL) | |
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL) | |
answer = answer_match.group(1).strip() if answer_match else "" | |
reflection = reflection_match.group(1).strip() if reflection_match else "" | |
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL) | |
if answer == "": | |
return response, "", "" | |
return answer, reflection, steps | |
def generate(message, history, model, system_prompt, divine_msg, api_key, openai_api_key): | |
"""Generates the chatbot response.""" | |
if model == "gpt-4o": | |
if openai_api_key == "": | |
messages = [] | |
messages.append({"role": "user", "content": message}) | |
messages.append({"role": "assistant", "content": "Please provide an OpenAI key"}) | |
return history + messages, "" | |
response, thinking_time = respond(message, history, model, system_prompt, divine_msg, openai_api_key) | |
else: | |
response, thinking_time = respond(message, history, model, system_prompt, divine_msg, api_key) | |
if response.startswith("Error:"): | |
return history + [({"role": "system", "content": response},)], "" | |
answer, reflection, steps = parse_response(response) | |
messages = [] | |
messages.append({"role": "user", "content": message}) | |
formatted_steps = [f"Step {i}: {step}" for i, step in enumerate(steps, 1)] | |
all_steps = "\n".join(formatted_steps) + f"\n\nReflection: {reflection}" | |
messages.append({"role": "assistant", "content": all_steps, "metadata": {"title": f"Thinking Time: {thinking_time:.2f} sec"}}) | |
messages.append({"role": "assistant", "content": answer}) | |
return history + messages, "" | |
# Define the default system prompt | |
DEFAULT_SYSTEM_PROMPT = """ | |
You are a helpful assistant in normal conversation. | |
When given a problem to solve, | |
REMEMBER, THIS IS IMPORTANT: {divine_msg} | |
Follow these instructions precisely: | |
1. Read the given question carefully | |
2. Generate a detailed, logical step-by-step solution. | |
3. Enclose each step of your solution within <step> and </step> tags. | |
4. Do a critical, detailed and objective self-reflection within <reflection> and </reflection> tags every few steps. | |
5. Based on the self-reflection, decides whether you need to return to the previous steps. Copy the returned to step as the next step. | |
6. After completing the solution steps, reorganize and synthesize the steps | |
into the final answer within <answer> and </answer> tags. | |
7. Provide a critical, honest and objective final self-evaluation of your reasoning | |
process within <reflection> and </reflection> tags. | |
Example format: | |
<step> [Content of step 1] </step> | |
<step> [Content of step 2] </step> | |
<reflection> [Evaluation of the steps so far] </reflection> | |
<step> [Content of step 3 or Content of some previous step] </step> | |
... | |
<step> [Content of final step] </step> | |
<answer> [Final Answer] </answer> (must give final answer in this format) | |
<reflection> [final evaluation of the solution] </reflection> | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown("# GPT4-O1-Proxima") | |
gr.Markdown("Built based on GPT4-O purely based on prompt engineering.\n [The reference LLama3.1's are powered by SambaNova Cloud, ](https://cloud.sambanova.ai/apis)") | |
with gr.Row(): | |
opneai_api_key = gr.Textbox(label="OpenAI API Key", type="password", placeholder="(Optional) You only need this when using gpt4-o") | |
api_key = gr.Textbox(label="SambaNova API Key", type="password", placeholder="(Optional) Enter your SN Cloud API key here for more availability") | |
with gr.Row(): | |
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]) | |
divine_msg = gr.Dropdown(choices=DIVINE_MSG, label="Select Divine MESSAGE", value=DIVINE_MSG[0]) | |
chatbot = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", type="messages") | |
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...") | |
gr.Button("Clear Chat").click(lambda: ([], ""), inputs=None, outputs=[chatbot, msg]) | |
system_prompt = gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=15, interactive=True) | |
msg.submit(generate, inputs=[msg, chatbot, model, system_prompt, divine_msg, api_key, opneai_api_key], outputs=[chatbot, msg]) | |
demo.launch(share=True, show_api=False) |