Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,736 Bytes
0b23d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import importlib
import numpy as np
import torch
import torch.distributed as dist
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
return total_params
def check_istarget(name, para_list):
"""
name: full name of source para
para_list: partial name of target para
"""
istarget = False
for para in para_list:
if para in name:
return True
return istarget
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def load_npz_from_dir(data_dir):
data = [
np.load(os.path.join(data_dir, data_name))["arr_0"]
for data_name in os.listdir(data_dir)
]
data = np.concatenate(data, axis=0)
return data
def load_npz_from_paths(data_paths):
data = [np.load(data_path)["arr_0"] for data_path in data_paths]
data = np.concatenate(data, axis=0)
return data
def setup_dist(args):
if dist.is_initialized():
return
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group("nccl", init_method="env://")
|