Spaces:
Sleeping
Sleeping
File size: 9,929 Bytes
765bd33 0f13924 765bd33 419cfa8 765bd33 f6f39d8 765bd33 1e4fc14 765bd33 c56b9f1 765bd33 675c01e 765bd33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import cv2
import numpy as np
import json
import random
from PIL import Image, ImageDraw, ImageFont
import requests
import base64
import gradio as gr
# from IPython import embed
model = os.path.join(os.path.dirname(__file__), "models/eva/Eva_0.png")
MODEL_MAP = {
"AI Model Rouyan_0": 'models/rouyan_new/Rouyan_0.png',
"AI Model Rouyan_1": 'models/rouyan_new/Rouyan_1.png',
"AI Model Rouyan_2": 'models/rouyan_new/Rouyan_2.png',
"AI Model Eva_0": 'models/eva/Eva_0.png',
"AI Model Eva_1": 'models/eva/Eva_1.png',
"AI Model Simon_0": 'models/simon_online/Simon_0.png',
"AI Model Simon_1": 'models/simon_online/Simon_1.png',
"AI Model Xuanxuan_0": 'models/xiaoxuan_online/Xuanxuan_0.png',
"AI Model Xuanxuan_1": 'models/xiaoxuan_online/Xuanxuan_1.png',
"AI Model Xuanxuan_2": 'models/xiaoxuan_online/Xuanxuan_2.png',
"AI Model Yaqi_0": 'models/yaqi/Yaqi_0.png',
"AI Model Yaqi_1": 'models/yaqi/Yaqi_1.png',
"AI Model Yaqi_2": 'models/yaqi/Yaqi_2.png',
"AI Model Yaqi_3": 'models/yaqi/Yaqi_3.png',
"AI Model Yifeng_0": 'models/yifeng_online/Yifeng_0.png',
"AI Model Yifeng_1": 'models/yifeng_online/Yifeng_1.png',
"AI Model Yifeng_2": 'models/yifeng_online/Yifeng_2.png',
"AI Model Yifeng_3": 'models/yifeng_online/Yifeng_3.png',
}
def add_waterprint(img):
h, w, _ = img.shape
img = cv2.putText(img, 'Powered by OutfitAnyone', (int(0.3*w), h-20), cv2.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv2.LINE_AA)
return img
def get_tryon_result(model_name, garment1, garment2, seed=1234):
# model_name = "AI Model " + model_name.split("\\")[-1].split(".")[0] # windows
model_name = "AI Model " + model_name.split("/")[-1].split(".")[0] # linux
print(model_name)
encoded_garment1 = cv2.imencode('.jpg', garment1)[1].tobytes()
encoded_garment1 = base64.b64encode(encoded_garment1).decode('utf-8')
if garment2 is not None:
encoded_garment2 = cv2.imencode('.jpg', garment2)[1].tobytes()
encoded_garment2 = base64.b64encode(encoded_garment2).decode('utf-8')
else:
encoded_garment2 = ''
url = os.environ['OA_IP_ADDRESS']
headers = {'Content-Type': 'application/json'}
seed = random.randint(0, 1222222222)
data = {
"garment1": encoded_garment1,
"garment2": encoded_garment2,
"model_name": model_name,
"seed": seed
}
response = requests.post(url, headers=headers, data=json.dumps(data))
print("response code", response.status_code)
if response.status_code == 200:
result = response.json()
result = base64.b64decode(result['images'][0])
result_np = np.frombuffer(result, np.uint8)
result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
else:
print('server error!')
final_img = add_waterprint(result_img)
return final_img
with gr.Blocks(css = ".output-image, .input-image, .image-preview {height: 400px !important} ") as demo:
# gr.Markdown("# Outfit Anyone v0.9")
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/HumanAIGC/OutfitAnyone" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
</a>
<div>
<h1 >Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person</h1>
<h4 >v0.9</h4>
<h5 style="margin: 0;">If you like our project, please give us a star on Github to stay updated with the latest developments.</h5>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;>
<a href="https://github.com/HumanAIGC/OutfitAnyone"><img src="https://img.shields.io/badge/Arxiv-0000.00000-red"></a>
<a href='https://humanaigc.github.io/outfit-anyone/'><img src='https://img.shields.io/badge/Project_Page-OutfitAnyone-green' alt='Project Page'></a>
<a href='https://github.com/HumanAIGC/OutfitAnyone'><img src='https://img.shields.io/badge/Github-Repo-blue'></a>
</div>
</div>
</div>
""")
with gr.Row():
with gr.Column():
init_image = gr.Image(sources='clipboard', type="filepath", label="model", value=model)
example = gr.Examples(inputs=init_image,
examples_per_page=4,
examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_2')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Eva_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Simon_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Eva_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Simon_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Xuanxuan_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Xuanxuan_2')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yaqi_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yifeng_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yifeng_3')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yifeng_2')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yaqi_0')),
])
with gr.Column():
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h3>Models are fixed and cannot be uploaded or modified; we only support users uploading their own garments.</h3>
<h4 style="margin: 0;">For a one-piece dress or coat, you only need to upload the image to the 'top garment' section and leave the 'lower garment' section empty.</h4>
</div>
</div>
""")
with gr.Row():
garment_top = gr.Image(sources='upload', type="numpy", label="top garment")
example_top = gr.Examples(inputs=garment_top,
examples_per_page=5,
examples=[os.path.join(os.path.dirname(__file__), "garments/top222.JPG"),
os.path.join(os.path.dirname(__file__), "garments/top5.png"),
os.path.join(os.path.dirname(__file__), "garments/top333.png"),
os.path.join(os.path.dirname(__file__), "garments/dress1.png"),
os.path.join(os.path.dirname(__file__), "garments/dress2.png"),
])
garment_down = gr.Image(sources='upload', type="numpy", label="lower garment")
example_down = gr.Examples(inputs=garment_down,
examples_per_page=5,
examples=[os.path.join(os.path.dirname(__file__), "garments/bottom1.png"),
os.path.join(os.path.dirname(__file__), "garments/bottom2.PNG"),
os.path.join(os.path.dirname(__file__), "garments/bottom3.JPG"),
os.path.join(os.path.dirname(__file__), "garments/bottom4.PNG"),
os.path.join(os.path.dirname(__file__), "garments/bottom5.png"),
])
run_button = gr.Button(value="Run")
with gr.Column():
gallery = gr.Image()
run_button.click(fn=get_tryon_result,
inputs=[
init_image,
garment_top,
garment_down,
],
outputs=[gallery])
# Examples
gr.Markdown("## Examples")
with gr.Row():
reference_image1 = gr.Image(label="model", scale=1, value="examples/basemodel.png")
reference_image2 = gr.Image(label="garment", scale=1, value="examples/garment1.jpg")
reference_image3 = gr.Image(label="result", scale=1, value="examples/result1.png")
gr.Examples(
examples=[
["examples/basemodel.png", "examples/garment1.png", "examples/result1.png"],
["examples/basemodel.png", "examples/garment2.png", "examples/result2.png"],
["examples/basemodel.png", "examples/garment3.png", "examples/result3.png"],
],
inputs=[reference_image1, reference_image2, reference_image3],
label=None,
)
if __name__ == "__main__":
ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
print("ip address alibaba", ip)
demo.queue(max_size=10)
demo.launch()
|