File size: 3,858 Bytes
70de5aa
 
 
 
ae059f3
70de5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d576b
 
 
 
 
 
70de5aa
ae059f3
70de5aa
ae059f3
70de5aa
 
 
 
 
 
 
0a3520e
465440b
 
0a3520e
465440b
 
0a3520e
70de5aa
 
 
 
 
 
 
 
ae059f3
70de5aa
 
 
 
 
 
 
 
 
77f055e
70de5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
ae059f3
70de5aa
 
ae059f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import requests 
from PIL import Image, UnidentifiedImageError
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import gradio as gr
import os

# Load the model, tokenizer, and image processor with error handling
def load_model_and_components(model_name):
    try:
        model = VisionEncoderDecoderModel.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        image_processor = AutoImageProcessor.from_pretrained(model_name)
        return model, tokenizer, image_processor
    except Exception as e:
        raise RuntimeError(f"Error loading model components: {e}")

current_model_name = "laicsiifes/swin-distilbertimbau"
model, tokenizer, image_processor = load_model_and_components(current_model_name)

# Function to process the image and generate a caption
def generate_caption(image):
    try:
        pixel_values = image_processor(image, return_tensors="pt").pixel_values
        generated_ids = model.generate(pixel_values)
        caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return caption
    except Exception:
        return "Please upload a valid image."

# Predefined images for selection
image_folder = "images"
predefined_images_paths = [
    os.path.join(image_folder, fname) for fname in os.listdir(image_folder) if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))
]

# Gradio app
def app(image=None):
    try:
        if image is None:
            return "Please upload a valid image."
        return generate_caption(image)
    except Exception:
        return "Please upload a valid image."

# Define UI
with gr.Blocks() as interface:
    gr.Markdown("""
        # Welcome to the LAICSI-IFES space for Vision Encoder-Decoder (VED) demonstration
        
        ---
        
        ### Be patient with the Swin-GPorTuguese-2 as it is heavier than the Swin-DistilBERTimbau.
    """)
    with gr.Row():
        with gr.Column():
            model_selector = gr.Dropdown(choices=["laicsiifes/swin-distilbertimbau", "laicsiifes/swin-gportuguese-2"], 
                                         value="laicsiifes/swin-distilbertimbau", 
                                         label="Select Model")
            loading_message = gr.Textbox(label="Status Message")
            image_display = gr.Image(type="pil", label="Image Preview", interactive=False)
            upload_button = gr.File(label="Upload an Image", file_types=["image"], type="filepath")
            examples = gr.Examples(predefined_images_paths, inputs=[upload_button], label="Examples")

        with gr.Column():
            output_text = gr.Textbox(label="Generated Caption")

    # Define logic
    def handle_uploaded_image(image):
        try:
            if image is None:
                return None, "Please upload a valid image."
            pil_image = Image.open(image).convert("RGB")
            return pil_image, generate_caption(pil_image)
        except Exception:
            return None, "Please upload a valid image."

    def switch_model(selected_model):
        gr.Info("Loading model... Please wait.")
        return "Loading model... Please wait.", None, None, None

    def load_new_model(selected_model):
        global model, tokenizer, image_processor
        model, tokenizer, image_processor = load_model_and_components(selected_model)
        return "Model loaded successfully.", None, None, None

    model_selector.change(fn=switch_model, inputs=model_selector, outputs=[loading_message, upload_button, image_display, output_text])
    model_selector.change(fn=load_new_model, inputs=model_selector, outputs=[loading_message, image_display, output_text])
    upload_button.change(fn=handle_uploaded_image, inputs=upload_button, outputs=[image_display, output_text])

    interface.launch(share=False)