lamhieu's picture
chore: update something
068cd80
raw
history blame
6.35 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
DESCRIPTION = """\
# Playground with Ghost 8B Beta (p)
**Ghost 8B Beta** is a large language model developed with goals that include excellent multilingual support, superior knowledge capabilities, and cost-effectiveness. The model comes in two context length versions, 8k and 128k, along with multilingual function tools support by default.
The languages supported are 🇺🇸 English, 🇫🇷 French, 🇮🇹 Italian, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean and 🇨🇳 Chinese.
📋 Note: current model version is "disl-0x5-8k" (10 Jul 2024), context length 8k and current status is "moderating / previewing". For detailed information about the model, see [here](https://ghost-x.org/docs/models/ghost-8b-beta/). Try to experience it the way you want!
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 26px; margin-bottom: 2px; opacity: 0.20;">👻 Ghost 8B Beta</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.10;">Ask and share whatever you want ~</p>
</div>
"""
LICENSE = """
<p/>
---
Ghost 8B Beta may give inaccurate information, including information about people, so please verify Ghost 8B Beta's answers. [Ghost 8B Beta](https://ghost-x.org/docs/models/ghost-8b-beta/) by [Ghost X](https://ghost-x.org).
"""
EXAMPLES = [
[
"Explain the concept of quantum entanglement and its implications for quantum computing."
],
["Comment le mouvement des Lumières a-t-il influencé la Révolution française ?"],
["Quale fu l'impatto del Rinascimento italiano sull'arte e la cultura europea?"],
[
"Spiega il funzionamento e le applicazioni della spettroscopia Raman in chimica analitica."
],
[
"Explique el teorema de incompletitud de Gödel y sus implicaciones en la lógica matemática."
],
[
"Descreva o processo de meiose celular e sua importância na variabilidade genética."
],
[
"Giải thích nguyên lý hoạt động của máy học sâu (deep learning) trong trí tuệ nhân tạo và ứng dụng của nó trong xử lý ngôn ngữ tự nhiên."
],
["조선 시대의 신분제도가 한국 사회에 미친 영향을 분석하시오."],
["分析丝绸之路对中国古代文化交流和经济发展的影响。"],
]
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "lamhieu/ghost-8b-beta-disl-0x5-8k"
model_tk = os.getenv("HF_TOKEN", None)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
token=model_tk,
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
token=model_tk,
)
@spaces.GPU(duration=60)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.4,
top_p: float = 0.95,
top_k: int = 50,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
)
input_ids = input_ids.to(model.device)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(
f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens."
)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chatbot = gr.Chatbot(height=400, placeholder=PLACEHOLDER, label="Ghost 8B Beta")
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=chatbot,
fill_height=True,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.4,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=100,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
),
],
stop_btn=None,
cache_examples=False,
examples=EXAMPLES,
)
with gr.Blocks(fill_height=True, css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
# demo.queue(max_size=20).launch()
demo.launch()