Spaces:
Paused
Paused
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) | |
DESCRIPTION = """\ | |
# Playground with Ghost 8B Beta (p) | |
**Ghost 8B Beta** is a large language model developed with goals that include excellent multilingual support, superior knowledge capabilities, and cost-effectiveness. The model comes in two context length versions, 8k and 128k, along with multilingual function tools support by default. | |
The languages supported are 🇺🇸 English, 🇫🇷 French, 🇮🇹 Italian, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean and 🇨🇳 Chinese. | |
📋 Note: current model version is "disl-0x5-8k" (10 Jul 2024), context length 8k and current status is "moderating / previewing". For detailed information about the model, see [here](https://ghost-x.org/docs/models/ghost-8b-beta/). Try to experience it the way you want! | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 26px; margin-bottom: 2px; opacity: 0.20;">👻 Ghost 8B Beta</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.10;">Ask and share whatever you want ~</p> | |
</div> | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
Ghost 8B Beta may give inaccurate information, including information about people, so please verify Ghost 8B Beta's answers. [Ghost 8B Beta](https://ghost-x.org/docs/models/ghost-8b-beta/) by [Ghost X](https://ghost-x.org). | |
""" | |
EXAMPLES = [ | |
[ | |
"Explain the concept of quantum entanglement and its implications for quantum computing." | |
], | |
["Comment le mouvement des Lumières a-t-il influencé la Révolution française ?"], | |
["Quale fu l'impatto del Rinascimento italiano sull'arte e la cultura europea?"], | |
[ | |
"Spiega il funzionamento e le applicazioni della spettroscopia Raman in chimica analitica." | |
], | |
[ | |
"Explique el teorema de incompletitud de Gödel y sus implicaciones en la lógica matemática." | |
], | |
[ | |
"Descreva o processo de meiose celular e sua importância na variabilidade genética." | |
], | |
[ | |
"Giải thích nguyên lý hoạt động của máy học sâu (deep learning) trong trí tuệ nhân tạo và ứng dụng của nó trong xử lý ngôn ngữ tự nhiên." | |
], | |
["조선 시대의 신분제도가 한국 사회에 미친 영향을 분석하시오."], | |
["分析丝绸之路对中国古代文化交流和经济发展的影响。"], | |
] | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "lamhieu/ghost-8b-beta-disl-0x5-8k" | |
model_tk = os.getenv("HF_TOKEN", None) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
trust_remote_code=True, | |
token=model_tk, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
token=model_tk, | |
) | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.4, | |
top_p: float = 0.95, | |
top_k: int = 50, | |
repetition_penalty: float = 1.0, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend( | |
[ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant}, | |
] | |
) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template( | |
conversation, add_generation_prompt=True, return_tensors="pt" | |
) | |
input_ids = input_ids.to(model.device) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning( | |
f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens." | |
) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chatbot = gr.Chatbot(height=400, placeholder=PLACEHOLDER, label="Ghost 8B Beta") | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=2.0, | |
step=0.1, | |
value=0.4, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.95, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.0, | |
), | |
], | |
stop_btn=None, | |
cache_examples=False, | |
examples=EXAMPLES, | |
) | |
with gr.Blocks(fill_height=True, css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
# demo.queue(max_size=20).launch() | |
demo.launch() | |