Spaces:
Paused
Paused
chore: support tools with search on internet
Browse files- app.py +241 -49
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
# pylint: skip-file
|
2 |
|
3 |
import subprocess
|
|
|
|
|
4 |
|
5 |
subprocess.run(
|
6 |
f"pip install flash-attn --no-build-isolation",
|
@@ -15,7 +17,11 @@ from typing import Iterator
|
|
15 |
import gradio as gr
|
16 |
import spaces
|
17 |
import torch
|
|
|
|
|
18 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
|
19 |
|
20 |
|
21 |
MAX_MAX_NEW_TOKENS = 4096
|
@@ -25,13 +31,12 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
|
|
25 |
DESCRIPTION = """\
|
26 |
# Playground with Ghost 8B Beta (ฮฒ, 8k)
|
27 |
|
28 |
-
**Ghost 8B Beta**
|
29 |
-
|
30 |
-
The Ghost 8B Beta model outperforms prominent models such as Llama 3 8B Instruct, GPT 3.5 Turbo in the lc_winrate score. In addition, it also outperforms Claude 3 Opus, Claude 3 Sonnet, GPT-4, and Mistral Large when comparing the winrate score of AlpacaEval 2.0, [*](https://ghost-x.org/docs/models/ghost-8b-beta/).
|
31 |
|
32 |
The languages supported are ๐บ๐ธ English, ๐ซ๐ท French, ๐ฎ๐น Italian, ๐ช๐ธ Spanish, ๐ต๐น Portuguese, ๐ฉ๐ช German, ๐ป๐ณ Vietnamese, ๐ฐ๐ท Korean and ๐จ๐ณ Chinese.
|
33 |
|
34 |
-
|
|
|
35 |
"""
|
36 |
|
37 |
|
@@ -250,88 +255,274 @@ if not torch.cuda.is_available():
|
|
250 |
|
251 |
if torch.cuda.is_available():
|
252 |
model_id = "ghost-x/ghost-8b-beta"
|
253 |
-
|
254 |
model = AutoModelForCausalLM.from_pretrained(
|
255 |
model_id,
|
256 |
device_map="auto",
|
257 |
torch_dtype=torch.bfloat16,
|
258 |
attn_implementation="flash_attention_2",
|
259 |
trust_remote_code=True,
|
260 |
-
token=
|
261 |
)
|
262 |
tokenizer = AutoTokenizer.from_pretrained(
|
263 |
model_id,
|
264 |
trust_remote_code=True,
|
265 |
-
token=
|
266 |
)
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
@spaces.GPU(duration=120)
|
270 |
def generate(
|
271 |
message: str,
|
272 |
chat_history: list[tuple[str, str]],
|
273 |
-
|
|
|
274 |
max_new_tokens: int = 1536,
|
275 |
temperature: float = 0.4,
|
276 |
top_p: float = 0.95,
|
277 |
top_k: int = 50,
|
278 |
repetition_penalty: float = 1.0,
|
279 |
) -> Iterator[str]:
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
)
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
)
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
)
|
305 |
-
generate_kwargs = dict(
|
306 |
-
input_ids=input_ids,
|
307 |
-
streamer=streamer,
|
308 |
-
max_new_tokens=max_new_tokens,
|
309 |
-
do_sample=True,
|
310 |
-
repetition_penalty=repetition_penalty,
|
311 |
-
)
|
312 |
-
if temperature == 0:
|
313 |
-
generate_kwargs["do_sample"] = False
|
314 |
-
else:
|
315 |
-
generate_kwargs["temperature"] = temperature
|
316 |
-
generate_kwargs["top_p"] = top_p
|
317 |
-
generate_kwargs["top_k"] = top_k
|
318 |
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
326 |
|
|
|
327 |
|
328 |
-
|
|
|
|
|
|
|
329 |
|
330 |
chat_interface = gr.ChatInterface(
|
331 |
fn=generate,
|
332 |
chatbot=chatbot,
|
333 |
fill_height=True,
|
334 |
additional_inputs=[
|
|
|
|
|
|
|
335 |
gr.Textbox(label="System prompt", lines=6),
|
336 |
gr.Slider(
|
337 |
label="Max new tokens",
|
@@ -373,6 +564,7 @@ chat_interface = gr.ChatInterface(
|
|
373 |
cache_examples=False,
|
374 |
examples=EXAMPLES,
|
375 |
examples_per_page=9,
|
|
|
376 |
)
|
377 |
|
378 |
with gr.Blocks(fill_height=True, css="style.css") as demo:
|
|
|
1 |
# pylint: skip-file
|
2 |
|
3 |
import subprocess
|
4 |
+
import json
|
5 |
+
import requests
|
6 |
|
7 |
subprocess.run(
|
8 |
f"pip install flash-attn --no-build-isolation",
|
|
|
17 |
import gradio as gr
|
18 |
import spaces
|
19 |
import torch
|
20 |
+
import wikipedia
|
21 |
+
import time
|
22 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
23 |
+
from bs4 import BeautifulSoup
|
24 |
+
from functools import lru_cache
|
25 |
|
26 |
|
27 |
MAX_MAX_NEW_TOKENS = 4096
|
|
|
31 |
DESCRIPTION = """\
|
32 |
# Playground with Ghost 8B Beta (ฮฒ, 8k)
|
33 |
|
34 |
+
**Ghost 8B Beta** model outperforms prominent models such as Llama 3 8B Instruct, GPT 3.5 Turbo in the lc_winrate score. In addition, it also outperforms Claude 3 Opus, Claude 3 Sonnet, GPT-4, and Mistral Large when comparing the winrate score of AlpacaEval 2.0, [*](https://ghost-x.org/docs/models/ghost-8b-beta/). The model comes in two context length versions, [8k](https://huggingface.co/spaces/lamhieu/ghost-8b-beta-8k) and [128k](https://huggingface.co/spaces/lamhieu/ghost-8b-beta-128k), along with multilingual function tools support by default.
|
|
|
|
|
35 |
|
36 |
The languages supported are ๐บ๐ธ English, ๐ซ๐ท French, ๐ฎ๐น Italian, ๐ช๐ธ Spanish, ๐ต๐น Portuguese, ๐ฉ๐ช German, ๐ป๐ณ Vietnamese, ๐ฐ๐ท Korean and ๐จ๐ณ Chinese.
|
37 |
|
38 |
+
๐๏ธ **Updates**
|
39 |
+
* Jul 23, 2024: added support for tools, now available to search for information on the internet.
|
40 |
"""
|
41 |
|
42 |
|
|
|
255 |
|
256 |
if torch.cuda.is_available():
|
257 |
model_id = "ghost-x/ghost-8b-beta"
|
258 |
+
hf_serect = os.getenv("HF_TOKEN", None)
|
259 |
model = AutoModelForCausalLM.from_pretrained(
|
260 |
model_id,
|
261 |
device_map="auto",
|
262 |
torch_dtype=torch.bfloat16,
|
263 |
attn_implementation="flash_attention_2",
|
264 |
trust_remote_code=True,
|
265 |
+
token=hf_serect,
|
266 |
)
|
267 |
tokenizer = AutoTokenizer.from_pretrained(
|
268 |
model_id,
|
269 |
trust_remote_code=True,
|
270 |
+
token=hf_serect,
|
271 |
)
|
272 |
|
273 |
+
waiting_tools_timeout = 5
|
274 |
+
supported_tools = json.dumps(
|
275 |
+
[
|
276 |
+
{
|
277 |
+
"type": "function",
|
278 |
+
"function": {
|
279 |
+
"name": "search_on_internet",
|
280 |
+
"description": "Use this tool to search online, only use it for information you don't know or are unsure of, don't abuse it.",
|
281 |
+
"parameters": {
|
282 |
+
"type": "object",
|
283 |
+
"properties": {
|
284 |
+
"keyword": {
|
285 |
+
"type": "string",
|
286 |
+
"description": "Search keywords, rephrase to optimize search results based on questions suitable to the specified search type.",
|
287 |
+
"required": True,
|
288 |
+
},
|
289 |
+
"type": {
|
290 |
+
"type": "string",
|
291 |
+
"description": "Search type, based on the question to determine whether to search for it in 'wikipedia' or 'google', prefer to use wikipedia for information about events, history and people.",
|
292 |
+
"enum": ["wikipedia", "google"],
|
293 |
+
"default": "google",
|
294 |
+
"required": True,
|
295 |
+
},
|
296 |
+
},
|
297 |
+
},
|
298 |
+
},
|
299 |
+
}
|
300 |
+
],
|
301 |
+
ensure_ascii=False,
|
302 |
+
)
|
303 |
+
|
304 |
+
|
305 |
+
@lru_cache(maxsize=128)
|
306 |
+
def extract_text_from_webpage(html_content):
|
307 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
308 |
+
for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
|
309 |
+
tag.extract()
|
310 |
+
visible_text = soup.get_text(strip=True, separator=" ")
|
311 |
+
return visible_text
|
312 |
+
|
313 |
+
|
314 |
+
def search_with_wikipedia(query: str):
|
315 |
+
all_results = []
|
316 |
+
try:
|
317 |
+
all_results.append(wikipedia.summary(query))
|
318 |
+
except Exception as e:
|
319 |
+
pass
|
320 |
+
return all_results
|
321 |
+
|
322 |
+
|
323 |
+
def search_with_google(
|
324 |
+
query: str,
|
325 |
+
num_results: int = 3,
|
326 |
+
timeout: int = 5,
|
327 |
+
ssl_verify: bool = None,
|
328 |
+
):
|
329 |
+
all_results = []
|
330 |
+
max_chars_per_page = 4096
|
331 |
+
with requests.Session() as session:
|
332 |
+
resp = session.get(
|
333 |
+
url="https://www.google.com/search",
|
334 |
+
headers={
|
335 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"
|
336 |
+
},
|
337 |
+
params={
|
338 |
+
"q": query,
|
339 |
+
"num": num_results,
|
340 |
+
"udm": 14,
|
341 |
+
},
|
342 |
+
timeout=timeout,
|
343 |
+
verify=ssl_verify,
|
344 |
+
)
|
345 |
+
resp.raise_for_status()
|
346 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
347 |
+
result_block = soup.find_all("div", attrs={"class": "g"})
|
348 |
+
for result in result_block:
|
349 |
+
link = result.find("a", href=True)
|
350 |
+
if link:
|
351 |
+
link = link["href"]
|
352 |
+
try:
|
353 |
+
webpage = session.get(
|
354 |
+
link,
|
355 |
+
headers={
|
356 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"
|
357 |
+
},
|
358 |
+
)
|
359 |
+
webpage.raise_for_status()
|
360 |
+
visible_text = extract_text_from_webpage(webpage.text)
|
361 |
+
if len(visible_text) > max_chars_per_page:
|
362 |
+
visible_text = visible_text[:max_chars_per_page]
|
363 |
+
all_results.append({"link": link, "text": visible_text})
|
364 |
+
except requests.exceptions.RequestException as e:
|
365 |
+
print(f"Error fetching or processing {link}: {e}")
|
366 |
+
pass
|
367 |
+
else:
|
368 |
+
pass
|
369 |
+
return all_results
|
370 |
+
|
371 |
|
372 |
@spaces.GPU(duration=120)
|
373 |
def generate(
|
374 |
message: str,
|
375 |
chat_history: list[tuple[str, str]],
|
376 |
+
allow_used_tools: bool = True,
|
377 |
+
system_prompt: str = "",
|
378 |
max_new_tokens: int = 1536,
|
379 |
temperature: float = 0.4,
|
380 |
top_p: float = 0.95,
|
381 |
top_k: int = 50,
|
382 |
repetition_penalty: float = 1.0,
|
383 |
) -> Iterator[str]:
|
384 |
+
# print()
|
385 |
+
# print("allow_used_tools:\n", allow_used_tools)
|
386 |
+
# print("system_prompt:\n", system_prompt)
|
387 |
+
# print("max_new_tokens:\n", max_new_tokens)
|
388 |
+
# print("temperature:\n", temperature)
|
389 |
+
|
390 |
+
def build_input_ids(
|
391 |
+
apply_tools: bool = None,
|
392 |
+
references: list[str] = None,
|
393 |
+
):
|
394 |
+
conversation = []
|
395 |
+
if system_prompt:
|
396 |
+
conversation.append({"role": "system", "content": system_prompt})
|
397 |
+
if apply_tools is True:
|
398 |
+
conversation.append({"role": "tools", "content": supported_tools})
|
399 |
+
if (
|
400 |
+
references is not None
|
401 |
+
and isinstance(references, list)
|
402 |
+
and len(references) > 0
|
403 |
+
):
|
404 |
+
conversation.append(
|
405 |
+
{
|
406 |
+
"role": "refs",
|
407 |
+
"content": json.dumps(references, ensure_ascii=False),
|
408 |
+
}
|
409 |
+
)
|
410 |
+
|
411 |
+
for user, assistant in chat_history:
|
412 |
+
conversation.extend(
|
413 |
+
[
|
414 |
+
{"role": "user", "content": user},
|
415 |
+
{"role": "assistant", "content": assistant},
|
416 |
+
]
|
417 |
+
)
|
418 |
+
conversation.append({"role": "user", "content": message})
|
419 |
+
|
420 |
+
input_ids = tokenizer.apply_chat_template(
|
421 |
+
conversation, add_generation_prompt=True, return_tensors="pt"
|
422 |
)
|
423 |
+
input_ids = input_ids.to(model.device)
|
424 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
425 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
426 |
+
gr.Warning(
|
427 |
+
f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens."
|
428 |
+
)
|
429 |
+
return input_ids
|
430 |
|
431 |
+
def generate_chat_responses(
|
432 |
+
previous_response: str = None,
|
433 |
+
):
|
434 |
+
document_references = []
|
435 |
+
if previous_response is not None:
|
436 |
+
scheduled_tools_runs = None
|
437 |
+
try:
|
438 |
+
scheduled_tools_runs = json.loads(previous_response)
|
439 |
+
if scheduled_tools_runs["type"] == "function" and scheduled_tools_runs[
|
440 |
+
"name"
|
441 |
+
] in ["search_on_internet"]:
|
442 |
+
pass
|
443 |
+
else:
|
444 |
+
scheduled_tools_runs = None
|
445 |
+
except Exception as e:
|
446 |
+
print(e)
|
447 |
+
pass
|
448 |
+
|
449 |
+
if (
|
450 |
+
scheduled_tools_runs is not None
|
451 |
+
and scheduled_tools_runs["name"] == "search_on_internet"
|
452 |
+
):
|
453 |
+
keyword = scheduled_tools_runs["arguments"]["keyword"]
|
454 |
+
search_type = scheduled_tools_runs["arguments"]["type"]
|
455 |
+
if search_type == "wikipedia":
|
456 |
+
gr.Info("Searching for information on the Wikipedia.")
|
457 |
+
document_references = search_with_wikipedia(keyword)
|
458 |
+
else:
|
459 |
+
gr.Info("Searching for information on the Google.")
|
460 |
+
document_references = search_with_google(keyword)
|
461 |
+
|
462 |
+
input_ids = build_input_ids(
|
463 |
+
apply_tools=(
|
464 |
+
True
|
465 |
+
if allow_used_tools is True and previous_response is None
|
466 |
+
else False
|
467 |
+
),
|
468 |
+
references=document_references,
|
469 |
+
)
|
470 |
+
streamer = TextIteratorStreamer(
|
471 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
472 |
+
)
|
473 |
+
generate_kwargs = dict(
|
474 |
+
input_ids=input_ids,
|
475 |
+
streamer=streamer,
|
476 |
+
max_new_tokens=max_new_tokens,
|
477 |
+
do_sample=True,
|
478 |
+
repetition_penalty=repetition_penalty,
|
479 |
)
|
480 |
+
if temperature == 0:
|
481 |
+
generate_kwargs["do_sample"] = False
|
482 |
+
else:
|
483 |
+
generate_kwargs["temperature"] = temperature
|
484 |
+
generate_kwargs["top_p"] = top_p
|
485 |
+
generate_kwargs["top_k"] = top_k
|
486 |
|
487 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
488 |
+
t.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
|
490 |
+
state = {
|
491 |
+
"mark": None,
|
492 |
+
"respond": False,
|
493 |
+
}
|
494 |
+
outputs = []
|
495 |
+
for text in streamer:
|
496 |
+
if state["mark"] is None:
|
497 |
+
state["mark"] = time.time()
|
498 |
+
outputs.append(text)
|
499 |
+
if state["mark"] + waiting_tools_timeout < time.time():
|
500 |
+
state["respond"] = True
|
501 |
+
yield "".join(outputs)
|
502 |
|
503 |
+
if (
|
504 |
+
state["respond"] is False
|
505 |
+
and state["mark"] + waiting_tools_timeout > time.time()
|
506 |
+
):
|
507 |
+
gr.Info("Searching for information on the internet.")
|
508 |
+
previous_response = "".join(outputs)
|
509 |
+
yield from generate_chat_responses(previous_response=previous_response)
|
510 |
|
511 |
+
yield from generate_chat_responses(previous_response=None)
|
512 |
|
513 |
+
|
514 |
+
chatbot = gr.Chatbot(
|
515 |
+
height=500, placeholder=PLACEHOLDER, label="Ghost 8B Beta", show_copy_button=True
|
516 |
+
)
|
517 |
|
518 |
chat_interface = gr.ChatInterface(
|
519 |
fn=generate,
|
520 |
chatbot=chatbot,
|
521 |
fill_height=True,
|
522 |
additional_inputs=[
|
523 |
+
gr.Checkbox(
|
524 |
+
label="Allow used tools (available: search on internet)", value=True
|
525 |
+
),
|
526 |
gr.Textbox(label="System prompt", lines=6),
|
527 |
gr.Slider(
|
528 |
label="Max new tokens",
|
|
|
564 |
cache_examples=False,
|
565 |
examples=EXAMPLES,
|
566 |
examples_per_page=9,
|
567 |
+
concurrency_limit=100,
|
568 |
)
|
569 |
|
570 |
with gr.Blocks(fill_height=True, css="style.css") as demo:
|
requirements.txt
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
accelerate==0.30.1
|
2 |
bitsandbytes==0.43.1
|
3 |
-
gradio==4.
|
4 |
scipy==1.13.0
|
5 |
sentencepiece==0.2.0
|
6 |
spaces==0.28.3
|
7 |
torch==2.0.0
|
8 |
transformers==4.41.0
|
|
|
|
|
|
1 |
accelerate==0.30.1
|
2 |
bitsandbytes==0.43.1
|
3 |
+
gradio==4.39.0
|
4 |
scipy==1.13.0
|
5 |
sentencepiece==0.2.0
|
6 |
spaces==0.28.3
|
7 |
torch==2.0.0
|
8 |
transformers==4.41.0
|
9 |
+
beautifulsoup4>=4.9
|
10 |
+
wikipedia==1.4.0
|