Spaces:
Sleeping
Sleeping
import gradio as gr | |
from peft import PeftModel, PeftConfig | |
from transformers import MistralForCausalLM, TextIteratorStreamer, AutoTokenizer, BitsAndBytesConfig | |
from time import sleep | |
from threading import Thread | |
from torch import float16 | |
import spaces | |
config = PeftConfig.from_pretrained("lang-uk/dragoman") | |
quant_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=float16, | |
bnb_4bit_use_double_quant=False, | |
) | |
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=float16).to("cuda") | |
#quantization_config=quant_config,)#.to("cuda") | |
#device_map="auto",) | |
model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda") | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False, add_bos_token=False) | |
def translate(input_text): | |
# iteratively generate | |
input_text = input_text.strip() | |
input_text = f"[INST] {input_text} [/INST]" | |
inputs = tokenizer([input_text], return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
generated_text = "" | |
for new_text in streamer: | |
generated_text += new_text | |
yield generated_text | |
iface = gr.Interface(fn=translate, inputs="text", outputs="text", examples=[["who holds this neighborhood?"]]) | |
iface.launch() |