File size: 3,527 Bytes
832c4a9
658af68
b9e87be
2bb32bf
b9e87be
 
658af68
7d93b52
832c4a9
7d93b52
5272e1b
832c4a9
658af68
832c4a9
aa6fb2d
832c4a9
658af68
ee7c5db
 
 
 
 
 
 
 
658af68
ee7c5db
 
 
 
658af68
ee7c5db
 
aa6fb2d
832c4a9
ee7c5db
832c4a9
aa6fb2d
 
832c4a9
 
 
 
 
90efbba
aa6fb2d
832c4a9
7011baa
832c4a9
 
7011baa
 
 
 
 
 
 
 
832c4a9
 
aa6fb2d
 
 
 
7011baa
aa6fb2d
 
832c4a9
aa6fb2d
 
 
 
 
 
 
ffbda55
aa6fb2d
90efbba
aa6fb2d
 
 
 
 
 
832c4a9
 
 
aa6fb2d
 
ee7c5db
 
7d93b52
ee7c5db
 
 
832c4a9
ee7c5db
 
 
 
 
 
 
 
 
 
 
 
 
0af3958
 
658af68
ee7c5db
 
 
 
658af68
 
ee7c5db
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import spaces  # 必须在最顶部导入
import gradio as gr
import os

# 获取 Hugging Face 访问令牌
hf_token = os.getenv("HF_API_TOKEN")

# 定义基础模型名称
base_model_name = "larry1129/meta-llama-3.1-8b-bnb-4bit"

# 定义 adapter 模型名称
adapter_model_name = "larry1129/WooWoof_AI"

# 定义全局变量用于缓存模型和分词器
model = None
tokenizer = None

# 定义提示生成函数
def generate_prompt(instruction, input_text=""):
    if input_text:
        prompt = f"""### Instruction:
{instruction}
### Input:
{input_text}
### Response:
"""
    else:
        prompt = f"""### Instruction:
{instruction}
### Response:
"""
    return prompt

# 定义生成响应的函数,并使用 @spaces.GPU 装饰
@spaces.GPU(duration=120)
def generate_response(instruction, input_text):
    global model, tokenizer

    if model is None:
        # 检查 bitsandbytes 是否已安装
        import importlib.util
        if importlib.util.find_spec("bitsandbytes") is None:
            import subprocess
            subprocess.call(["pip", "install", "--upgrade", "bitsandbytes"])

        # 在函数内部导入需要 GPU 的库
        import torch
        from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
        from peft import PeftModel

        # 创建量化配置
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16
        )

        # 加载分词器
        tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=hf_token)

        # 加载基础模型
        base_model = AutoModelForCausalLM.from_pretrained(
            base_model_name,
            quantization_config=bnb_config,
            device_map="auto",
            use_auth_token=hf_token,
            trust_remote_code=True
        )

        # 加载 adapter 并将其应用到基础模型上
        model = PeftModel.from_pretrained(
            base_model,
            adapter_model_name,
            torch_dtype=torch.float16,
            use_auth_token=hf_token
        )

        # 设置 pad_token
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = tokenizer.pad_token_id

        # 切换到评估模式
        model.eval()
    else:
        # 在函数内部导入需要的库
        import torch

    # 生成提示
    prompt = generate_prompt(instruction, input_text)
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            input_ids=inputs["input_ids"],
            attention_mask=inputs.get("attention_mask"),
            max_new_tokens=128,
            temperature=0.7,
            top_p=0.95,
            do_sample=True,
        )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = response.split("### Response:")[-1].strip()
    return response

# 创建 Gradio 接口
iface = gr.Interface(
    fn=generate_response,
    inputs=[
        gr.Textbox(lines=2, placeholder="请输入指令...", label="Instruction"),
        gr.Textbox(lines=2, placeholder="如果有额外输入,请在此填写...", label="Input (可选)")
    ],
    outputs="text",
    title="WooWoof AI 交互式聊天",
    description="基于 LLAMA 3.1 的大语言模型,支持指令和可选输入。",
    allow_flagging="never"
)

# 启动 Gradio 接口
iface.launch()