Spaces:
Runtime error
Runtime error
File size: 14,134 Bytes
08e5ef1 7edda8b 2bede7c 4c4c78d 5fd1a0a 7edda8b 2bede7c 75b770e 08e5ef1 1fba392 925d15e 08e5ef1 2bede7c 925d15e 7686e09 4c4c78d 6d814c5 4c4c78d 3ad22ce 184ed3a 3ad22ce 4c4c78d 7c36326 d9267f6 5696fee 3ad22ce f4651d4 9781999 d9267f6 75b770e 2124573 f4651d4 2124573 d9267f6 3ad22ce f4651d4 18ff4e4 5696fee 9781999 b7ccecf 9781999 3ad22ce 9781999 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 6d814c5 4c4c78d 6d814c5 9781999 4c4c78d 3ad22ce 9781999 4c4c78d 5696fee 9781999 b7ccecf d9267f6 b7ccecf d9267f6 c197d53 9781999 5696fee ef80b76 9781999 31ebe9e 9781999 31ebe9e 9781999 31ebe9e 9781999 b7ccecf 31ebe9e 9781999 6d814c5 9781999 31ebe9e 9781999 31ebe9e 9781999 31ebe9e 2124573 31ebe9e 6d814c5 31ebe9e b7ccecf 6d814c5 b7ccecf 9781999 3ad22ce 4c4c78d 9781999 3ad22ce 5696fee 9781999 4c4c78d 9781999 5696fee 9781999 5696fee 9781999 00dc59f 2bede7c 00dc59f d2fb1de ec000c3 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce c360795 3ad22ce 4c4c78d 3ad22ce 4c4c78d 3ad22ce 2bede7c 925d15e b31944c 925d15e b31944c 925d15e 2bede7c c360795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import shutil
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
HF_TOKEN = os.environ.get("HF_TOKEN")
def generate_importance_matrix(model_path, train_data_path):
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
os.chdir("llama.cpp")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in the current directory: {os.listdir('.')}")
if not os.path.isfile(f"../{model_path}"):
raise Exception(f"Model file not found: {model_path}")
print("Running imatrix command...")
process = subprocess.Popen(imatrix_command, shell=True)
try:
process.wait(timeout=60) # added wait
except subprocess.TimeoutExpired:
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=5) # grace period
except subprocess.TimeoutExpired:
print("Imatrix proc still didn't term. Forecfully terming process...")
process.kill()
os.chdir("..")
print("Importance matrix generation completed.")
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
if oauth_token.token is None:
raise ValueError("You have to be logged in.")
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
if split_max_size:
split_cmd += f" --split-max-size {split_max_size}"
split_cmd += f" {model_path} {model_path.split('.')[0]}"
print(f"Split command: {split_cmd}")
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
print(f"Split command stdout: {result.stdout}")
print(f"Split command stderr: {result.stderr}")
if result.returncode != 0:
raise Exception(f"Error splitting the model: {result.stderr}")
print("Model split successfully!")
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
if sharded_model_files:
print(f"Sharded model files: {sharded_model_files}")
api = HfApi(token=oauth_token.token)
for file in sharded_model_files:
file_path = os.path.join('.', file)
print(f"Uploading file: {file_path}")
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
print("Sharded model has been uploaded successfully!")
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
if oauth_token.token is None:
raise ValueError("You must be logged in to use GGUF-my-repo")
model_name = model_id.split('/')[-1]
fp16 = f"{model_name}.fp16.gguf"
try:
api = HfApi(token=oauth_token.token)
dl_pattern = ["*.md", "*.json", "*.model"]
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern += pattern
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Current working directory: {os.getcwd()}")
print(f"Model directory contents: {os.listdir(model_name)}")
conversion_script = "convert_hf_to_gguf.py"
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {fp16}")
imatrix_path = "llama.cpp/imatrix.dat"
if use_imatrix:
if train_data_file:
train_data_path = train_data_file.name
else:
train_data_path = "groups_merged.txt" #fallback calibration dataset
print(f"Training data file path: {train_data_path}")
if not os.path.isfile(train_data_path):
raise Exception(f"Training data file not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path)
else:
print("Not using imatrix quantization.")
username = whoami(oauth_token.token)["name"]
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
quantized_gguf_path = quantized_gguf_name
if use_imatrix:
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
else:
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error quantizing: {result.stderr}")
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
print(f"Quantized model path: {quantized_gguf_path}")
# Create empty repo
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("llama-cpp")
card.data.tags.append("gguf-my-repo")
card.data.base_model = model_id
card.text = dedent(
f"""
# {new_repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
```
"""
)
card.save(f"README.md")
if split_model:
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
else:
try:
print(f"Uploading quantized model: {quantized_gguf_path}")
api.upload_file(
path_or_fileobj=quantized_gguf_path,
path_in_repo=quantized_gguf_name,
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading quantized model: {e}")
imatrix_path = "llama.cpp/imatrix.dat"
if os.path.isfile(imatrix_path):
try:
print(f"Uploading imatrix.dat: {imatrix_path}")
api.upload_file(
path_or_fileobj=imatrix_path,
path_in_repo="imatrix.dat",
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading imatrix.dat: {e}")
api.upload_file(
path_or_fileobj=f"README.md",
path_in_repo=f"README.md",
repo_id=new_repo_id,
)
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
return (
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(model_name, ignore_errors=True)
print("Folder cleaned up successfully!")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use GGUF-my-repo.")
gr.LoginButton(min_width=250)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
q_method = gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method",
info="GGML quantization type",
value="Q4_K_M",
filterable=False,
visible=True
)
imatrix_q_method = gr.Dropdown(
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
label="Imatrix Quantization Method",
info="GGML imatrix quants type",
value="IQ4_NL",
filterable=False,
visible=False
)
use_imatrix = gr.Checkbox(
value=False,
label="Use Imatrix Quantization",
info="Use importance matrix for quantization."
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
train_data_file = gr.File(
label="Training Data File",
file_types=["txt"],
visible=False
)
split_model = gr.Checkbox(
value=False,
label="Split Model",
info="Shard the model using gguf-split."
)
split_max_tensors = gr.Number(
value=256,
label="Max Tensors per File",
info="Maximum number of tensors per file when splitting model.",
visible=False
)
split_max_size = gr.Textbox(
label="Max File Size",
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
visible=False
)
def update_visibility(use_imatrix):
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
use_imatrix.change(
fn=update_visibility,
inputs=use_imatrix,
outputs=[q_method, imatrix_q_method, train_data_file]
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
split_model,
split_max_tensors,
split_max_size,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
api_name=False
)
def update_split_visibility(split_model):
return gr.update(visible=split_model), gr.update(visible=split_model)
split_model.change(
fn=update_split_visibility,
inputs=split_model,
outputs=[split_max_tensors, split_max_size]
)
def restart_space():
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |