Spaces:
Running
Running
leandroaraujodev
commited on
Commit
·
a168116
1
Parent(s):
089cea4
update model
Browse files- app.py +42 -23
- documentos/empresa.pdf +0 -0
- documentos/lista_funcionarios.pdf +0 -0
app.py
CHANGED
@@ -30,6 +30,12 @@ import huggingface_hub
|
|
30 |
import logging
|
31 |
import sys
|
32 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
#Token do huggingface
|
35 |
HF_TOKEN: Optional[str] = os.getenv("HF_TOKEN")
|
@@ -54,7 +60,7 @@ for pasta in pastas:
|
|
54 |
|
55 |
# Configuração do Streamlit
|
56 |
st.sidebar.title("Configuração de LLM")
|
57 |
-
sidebar_option = st.sidebar.radio("Selecione o LLM", ["
|
58 |
# logo_url = 'app\logos\logo-sicoob.jpg'
|
59 |
# st.sidebar.image(logo_url)
|
60 |
import base64
|
@@ -73,12 +79,13 @@ with open("sicoob-logo.png", "rb") as f:
|
|
73 |
)
|
74 |
|
75 |
|
76 |
-
if sidebar_option == "Ollama":
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
from llama_index.llms.openai import OpenAI
|
81 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
|
|
82 |
Settings.llm = OpenAI(model="gpt-3.5-turbo")
|
83 |
Settings.embed_model = OpenAIEmbedding(model_name="text-embedding-ada-002")
|
84 |
elif sidebar_option == 'HF Local':
|
@@ -86,41 +93,53 @@ elif sidebar_option == 'HF Local':
|
|
86 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
87 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
88 |
|
89 |
-
query_wrapper_prompt = PromptTemplate(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
"\nInstrução: Use o histórico da conversa anterior, ou o contexto acima, para responder."
|
95 |
-
)
|
96 |
#Embedding do huggingface
|
97 |
Settings.embed_model = HuggingFaceEmbedding(
|
98 |
model_name="BAAI/bge-small-en-v1.5"
|
99 |
)
|
100 |
-
|
101 |
#Carregamento do modelo local, descomentar o modelo desejado
|
|
|
102 |
llm = HuggingFaceLLM(
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
#
|
107 |
#model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
|
108 |
#model_name="Qwen/Qwen2.5-14B-Instruct",
|
109 |
# model_name="meta-llama/Llama-3.2-3B",
|
110 |
#model_name="HuggingFaceH4/zephyr-7b-beta",
|
111 |
# model_name="meta-llama/Meta-Llama-3-8B",
|
112 |
-
|
113 |
-
model_name="meta-llama/Llama-3.2-3B",
|
114 |
|
115 |
-
tokenizer_name="
|
116 |
device_map="auto",
|
117 |
-
|
118 |
# uncomment this if using CUDA to reduce memory usage
|
119 |
-
model_kwargs={"torch_dtype": torch.
|
120 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
|
|
122 |
|
123 |
-
|
124 |
Settings.llm = llm
|
125 |
|
126 |
else:
|
|
|
30 |
import logging
|
31 |
import sys
|
32 |
from PIL import Image
|
33 |
+
import gc
|
34 |
+
|
35 |
+
def flush():
|
36 |
+
gc.collect()
|
37 |
+
torch.cuda.empty_cache()
|
38 |
+
torch.cuda.reset_peak_memory_stats()
|
39 |
|
40 |
#Token do huggingface
|
41 |
HF_TOKEN: Optional[str] = os.getenv("HF_TOKEN")
|
|
|
60 |
|
61 |
# Configuração do Streamlit
|
62 |
st.sidebar.title("Configuração de LLM")
|
63 |
+
sidebar_option = st.sidebar.radio("Selecione o LLM", ["OpenAI", "HF Local"])
|
64 |
# logo_url = 'app\logos\logo-sicoob.jpg'
|
65 |
# st.sidebar.image(logo_url)
|
66 |
import base64
|
|
|
79 |
)
|
80 |
|
81 |
|
82 |
+
#if sidebar_option == "Ollama":
|
83 |
+
# Settings.llm = Ollama(model="llama3.2:latest", request_timeout=500.0, num_gpu=1)
|
84 |
+
# Settings.embed_model = OllamaEmbedding(model_name="nomic-embed-text:latest")
|
85 |
+
if sidebar_option == "gpt-3.5":
|
86 |
from llama_index.llms.openai import OpenAI
|
87 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
88 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
89 |
Settings.llm = OpenAI(model="gpt-3.5-turbo")
|
90 |
Settings.embed_model = OpenAIEmbedding(model_name="text-embedding-ada-002")
|
91 |
elif sidebar_option == 'HF Local':
|
|
|
93 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
94 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
95 |
|
96 |
+
#query_wrapper_prompt = PromptTemplate(
|
97 |
+
#"Below are several documents about a company "
|
98 |
+
#"Write a response that appropriately completes the request.\n\n"
|
99 |
+
#"### Instruction:\n{query_str}\n\n### Response:"
|
100 |
+
#)
|
|
|
|
|
101 |
#Embedding do huggingface
|
102 |
Settings.embed_model = HuggingFaceEmbedding(
|
103 |
model_name="BAAI/bge-small-en-v1.5"
|
104 |
)
|
|
|
105 |
#Carregamento do modelo local, descomentar o modelo desejado
|
106 |
+
|
107 |
llm = HuggingFaceLLM(
|
108 |
+
context_window=2048,
|
109 |
+
max_new_tokens=256,
|
110 |
+
generate_kwargs={"do_sample": False},
|
111 |
+
#query_wrapper_prompt=query_wrapper_prompt,
|
112 |
#model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
|
113 |
#model_name="Qwen/Qwen2.5-14B-Instruct",
|
114 |
# model_name="meta-llama/Llama-3.2-3B",
|
115 |
#model_name="HuggingFaceH4/zephyr-7b-beta",
|
116 |
# model_name="meta-llama/Meta-Llama-3-8B",
|
117 |
+
model_name="numind/NuExtract-1.5",
|
118 |
+
#model_name="meta-llama/Llama-3.2-3B",
|
119 |
|
120 |
+
tokenizer_name="numind/NuExtract-1.5",
|
121 |
device_map="auto",
|
122 |
+
tokenizer_kwargs={"max_length": 2048},
|
123 |
# uncomment this if using CUDA to reduce memory usage
|
124 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
125 |
)
|
126 |
+
chat = [
|
127 |
+
|
128 |
+
{"role": "user", "content": "Hello, how are you?"},
|
129 |
+
|
130 |
+
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
131 |
+
|
132 |
+
{"role": "user", "content": "I'd like to show off how chat templating works!"},
|
133 |
+
|
134 |
+
]
|
135 |
+
|
136 |
+
from transformers import AutoTokenizer
|
137 |
+
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract-1.5")
|
139 |
|
140 |
+
tokenizer.apply_chat_template(chat, tokenize=False)
|
141 |
|
142 |
+
Settings.chunk_size = 512
|
143 |
Settings.llm = llm
|
144 |
|
145 |
else:
|
documentos/empresa.pdf
ADDED
Binary file (58.8 kB). View file
|
|
documentos/lista_funcionarios.pdf
ADDED
Binary file (38.6 kB). View file
|
|