Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,30 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def main():
|
7 |
|
8 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
@@ -34,31 +58,10 @@ def main():
|
|
34 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
35 |
model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL)
|
36 |
|
37 |
-
def preprocess(text):
|
38 |
-
new_text = []
|
39 |
-
for t in text.split(" "):
|
40 |
-
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
41 |
-
t = 'http' if t.startswith('http') else t
|
42 |
-
new_text.append(t)
|
43 |
-
return " ".join(new_text)
|
44 |
-
|
45 |
-
def get_top_emojis(text, top_n=TOP_N):
|
46 |
-
preprocessed = preprocess(text)
|
47 |
-
inputs = tokenizer(preprocessed, return_tensors="pt")
|
48 |
-
preds = model(**inputs).logits
|
49 |
-
scores = torch.nn.functional.softmax(preds, dim=-1).detach().numpy()
|
50 |
-
ranking = np.argsort(scores)
|
51 |
-
print(ranking)
|
52 |
-
ranking = ranking.squeeze()[::-1][:top_n]
|
53 |
-
print(scores)
|
54 |
-
print(ranking)
|
55 |
-
print(model.config.id2label)
|
56 |
-
emojis = [model.config.id2label[i] for i in ranking]
|
57 |
-
return ', '.join(map(str, emojis))
|
58 |
|
59 |
# Define function to run when submit is clicked
|
60 |
def submit(message):
|
61 |
-
if len(message)>0:
|
62 |
st.header(get_top_emojis(message))
|
63 |
else:
|
64 |
st.error("The text can't be empty")
|
@@ -68,8 +71,9 @@ def main():
|
|
68 |
submit(message)
|
69 |
|
70 |
st.text('')
|
71 |
-
st.markdown('<span style="color:blue; font-size:10px">App created by [@AlekseyDorkin](https://huggingface.co/AlekseyDorkin
|
72 |
-
|
|
|
73 |
|
74 |
|
75 |
if __name__ == "__main__":
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
|
6 |
+
|
7 |
+
def preprocess(text):
|
8 |
+
new_text = []
|
9 |
+
for t in text.split(" "):
|
10 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
11 |
+
t = 'http' if t.startswith('http') else t
|
12 |
+
new_text.append(t)
|
13 |
+
return " ".join(new_text)
|
14 |
+
|
15 |
+
|
16 |
+
def get_top_emojis(text, top_n=TOP_N):
|
17 |
+
preprocessed = preprocess(text)
|
18 |
+
inputs = tokenizer(preprocessed, return_tensors="pt")
|
19 |
+
preds = model(**inputs).logits
|
20 |
+
scores = torch.nn.functional.softmax(preds, dim=-1).detach().numpy()
|
21 |
+
ranking = np.argsort(scores)
|
22 |
+
print(ranking)
|
23 |
+
ranking = ranking.squeeze()[::-1][:top_n]
|
24 |
+
print(scores)
|
25 |
+
print(ranking)
|
26 |
+
print(model.config.id2label)
|
27 |
+
emojis = [model.config.id2label[i] for i in ranking]
|
28 |
+
return '/t'.join(map(str, emojis))
|
29 |
+
|
30 |
def main():
|
31 |
|
32 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
|
|
58 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
59 |
model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Define function to run when submit is clicked
|
63 |
def submit(message):
|
64 |
+
if len(message) > 0:
|
65 |
st.header(get_top_emojis(message))
|
66 |
else:
|
67 |
st.error("The text can't be empty")
|
|
|
71 |
submit(message)
|
72 |
|
73 |
st.text('')
|
74 |
+
st.markdown('''<span style="color:blue; font-size:10px">App created by [@AlekseyDorkin](https://huggingface.co/AlekseyDorkin
|
75 |
+
and [@akshay7](https://huggingface.co/akshay7)</span>''',
|
76 |
+
unsafe_allow_html=True)
|
77 |
|
78 |
|
79 |
if __name__ == "__main__":
|