Upload 4_Compare.py
Browse files- pages/4_Compare.py +231 -0
pages/4_Compare.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.metrics import r2_score
|
6 |
+
|
7 |
+
st.title("Compare Your Algorithm")
|
8 |
+
|
9 |
+
default_dataOne = {
|
10 |
+
"X": [1, 2, 3, 4, 5],
|
11 |
+
"Y": [2.2, 4.4, 6.5, 8.0, 10.1],
|
12 |
+
"Select": [True, True, True, True, True]
|
13 |
+
}
|
14 |
+
default_dataTwo = {
|
15 |
+
"X": [1, 10, 100, 1000, 10000],
|
16 |
+
"Y": [3.3, 6.6, 12.21, 24.84, 48.25],
|
17 |
+
"Select": [True, True, True, True, True]
|
18 |
+
}
|
19 |
+
dataOne = pd.DataFrame(default_dataOne)
|
20 |
+
dataTwo = pd.DataFrame(default_dataTwo)
|
21 |
+
|
22 |
+
xlabel = st.text_input("X-axis", "X")
|
23 |
+
ylabel = st.text_input("Y-axis", "Y")
|
24 |
+
|
25 |
+
col1, col2 = st.columns(2)
|
26 |
+
|
27 |
+
with col1:
|
28 |
+
st.subheader("Enter Your Data One")
|
29 |
+
cola, colb = st.columns(2)
|
30 |
+
with cola:
|
31 |
+
user_dataOne = st.data_editor(dataOne, num_rows="dynamic", key="data_editor_one")
|
32 |
+
with colb:
|
33 |
+
fit_typeOne = st.radio(
|
34 |
+
"Choose the Type of Fit",
|
35 |
+
options=["Logarithmic", "Linear", "Linearithmic", "Quadratic", "Cubic", "Exponential"],
|
36 |
+
index=1,
|
37 |
+
key="one"
|
38 |
+
)
|
39 |
+
|
40 |
+
with col2:
|
41 |
+
st.subheader("Enter Your Data Two")
|
42 |
+
colc, cold = st.columns(2)
|
43 |
+
with colc:
|
44 |
+
user_dataTwo = st.data_editor(dataTwo, num_rows="dynamic", key="data_editor_two")
|
45 |
+
with cold:
|
46 |
+
fit_typeTwo = st.radio(
|
47 |
+
"Choose the Type of Fit",
|
48 |
+
options=["Logarithmic", "Linear", "Linearithmic", "Quadratic", "Cubic", "Exponential"],
|
49 |
+
index=0,
|
50 |
+
key="two"
|
51 |
+
)
|
52 |
+
|
53 |
+
try:
|
54 |
+
selected_dataOne = user_dataOne[user_dataOne["Select"]]
|
55 |
+
x = np.array(selected_dataOne["X"], dtype=float)
|
56 |
+
y = np.array(selected_dataOne["Y"], dtype=float)
|
57 |
+
|
58 |
+
if len(x) < 2 and len(y) < 2:
|
59 |
+
st.warning("Please enter at least 2 data points.")
|
60 |
+
st.stop()
|
61 |
+
except ValueError:
|
62 |
+
st.error("Invalid data entered. Please ensure all values are numeric.")
|
63 |
+
st.stop()
|
64 |
+
|
65 |
+
try:
|
66 |
+
selected_dataTwo = user_dataTwo[user_dataTwo["Select"]]
|
67 |
+
u = np.array(selected_dataTwo["X"], dtype=float)
|
68 |
+
v = np.array(selected_dataTwo["Y"], dtype=float)
|
69 |
+
|
70 |
+
if len(u) < 2 and len(v) < 2:
|
71 |
+
st.warning("Please enter at least 2 data points.")
|
72 |
+
st.stop()
|
73 |
+
except ValueError:
|
74 |
+
st.error("Invalid data entered. Please ensure all values are numeric.")
|
75 |
+
st.stop()
|
76 |
+
|
77 |
+
if fit_typeOne == "Logarithmic":
|
78 |
+
try:
|
79 |
+
log_x = np.log(x)
|
80 |
+
coefficients = np.polyfit(log_x, y , 1)
|
81 |
+
y_fit = coefficients[0] * log_x + coefficients[1]
|
82 |
+
r2 = r2_score(y, y_fit)
|
83 |
+
equation = f"y = {coefficients[0]:.4f}*log(x) + {coefficients[1]:.4f}"
|
84 |
+
except ValueError:
|
85 |
+
st.error("Logarithmic fit failed. Ensure all X values are positive.")
|
86 |
+
st.stop()
|
87 |
+
|
88 |
+
elif fit_typeOne == "Linear":
|
89 |
+
degree = 1
|
90 |
+
coefficients = np.polyfit(x, y, degree)
|
91 |
+
y_fit = np.polyval(coefficients, x)
|
92 |
+
r2 = r2_score(y, y_fit)
|
93 |
+
equation = f"y = {coefficients[0]:.4f}*x + {coefficients[1]:.4f}"
|
94 |
+
|
95 |
+
elif fit_typeOne == "Linearithmic":
|
96 |
+
try:
|
97 |
+
x_log_x = x * np.log(x)
|
98 |
+
A = np.column_stack((x_log_x, x, np.ones_like(x)))
|
99 |
+
coefficients, _, _, _ = np.linalg.lstsq(A, y, rcond=None)
|
100 |
+
a, b, c = coefficients
|
101 |
+
y_fit = a * x_log_x + b * x + c
|
102 |
+
r2 = r2_score(y, y_fit)
|
103 |
+
equation = f"y = {a:.4f}*x*log(x) + {b:.4f}*x + {c:.4f}"
|
104 |
+
except ValueError:
|
105 |
+
st.error("Linearithmic fir failed. Ensure all X values are positive.")
|
106 |
+
st.stop()
|
107 |
+
|
108 |
+
elif fit_typeOne == "Quadratic":
|
109 |
+
degree = 2
|
110 |
+
coefficients = np.polyfit(x, y, degree)
|
111 |
+
y_fit = np.polyval(coefficients, x)
|
112 |
+
r2 = r2_score(y, y_fit)
|
113 |
+
equation = f"y = {coefficients[0]:.4f}*x² + {coefficients[1]:.4f}*x + {coefficients[2]:.4f}"
|
114 |
+
|
115 |
+
elif fit_typeOne == "Cubic":
|
116 |
+
degree = 3
|
117 |
+
coefficients = np.polyfit(x, y, degree)
|
118 |
+
y_fit = np.polyval(coefficients, x)
|
119 |
+
r2 = r2_score(y, y_fit)
|
120 |
+
equation = f"y = {coefficients[0]:.4f}*x³ + {coefficients[1]:.4f}*x² + {coefficients[2]:.4f}*x + {coefficients[3]:.4f}"
|
121 |
+
|
122 |
+
elif fit_typeOne == "Exponential":
|
123 |
+
try:
|
124 |
+
log_y = np.log(y)
|
125 |
+
coefficients = np.polyfit(x, log_y, 1)
|
126 |
+
a = np.exp(coefficients[1])
|
127 |
+
b = coefficients[0]
|
128 |
+
y_fit = a * np.exp(b * x)
|
129 |
+
r2 = r2_score(y, y_fit)
|
130 |
+
equation = f"y = {a:.4f}*exp({b:.4f}*x)"
|
131 |
+
except ValueError:
|
132 |
+
st.error("Exponential fit failed. Ensure all Y values are positive.")
|
133 |
+
st.stop()
|
134 |
+
|
135 |
+
if fit_typeTwo == "Logarithmic":
|
136 |
+
try:
|
137 |
+
log_u = np.log(u)
|
138 |
+
coefficients_Two = np.polyfit(log_u, v , 1)
|
139 |
+
v_fit = coefficients_Two[0] * log_u + coefficients_Two[1]
|
140 |
+
r2_Two = r2_score(v, v_fit)
|
141 |
+
equation_Two = f"y = {coefficients_Two[0]:.4f}*log(x) + {coefficients_Two[1]:.4f}"
|
142 |
+
except ValueError:
|
143 |
+
st.error("Logarithmic fit failed. Ensure all X values are positive.")
|
144 |
+
st.stop()
|
145 |
+
|
146 |
+
elif fit_typeTwo == "Linear":
|
147 |
+
degree_Two = 1
|
148 |
+
coefficients_Two = np.polyfit(u, v, degree_Two)
|
149 |
+
v_fit = np.polyval(coefficients_Two, u)
|
150 |
+
r2_Two = r2_score(v, v_fit)
|
151 |
+
equation_Two = f"y = {coefficients_Two[0]:.4f}*x + {coefficients_Two[1]:.4f}"
|
152 |
+
|
153 |
+
elif fit_typeTwo == "Linearithmic":
|
154 |
+
try:
|
155 |
+
u_log_u = u * np.log(u)
|
156 |
+
B = np.column_stack((u_log_u, u, np.ones_like(u)))
|
157 |
+
coefficients_Two, _, _, _ = np.linalg.lstsq(B, v, rcond=None)
|
158 |
+
d, e, f = coefficients_Two
|
159 |
+
v_fit = d * u_log_u + e * u + f
|
160 |
+
r2_Two = r2_score(v, v_fit)
|
161 |
+
equation_Two = f"y = {d:.4f}*x*log(x) + {e:.4f}*x + {f:.4f}"
|
162 |
+
except ValueError:
|
163 |
+
st.error("Linearithmic fir failed. Ensure all X values are positive.")
|
164 |
+
st.stop()
|
165 |
+
|
166 |
+
elif fit_typeTwo == "Quadratic":
|
167 |
+
degree_Two = 2
|
168 |
+
coefficients_Two = np.polyfit(u, v, degree_Two)
|
169 |
+
v_fit = np.polyval(coefficients_Two, u)
|
170 |
+
r2_Two = r2_score(v, v_fit)
|
171 |
+
equation_Two = f"y = {coefficients_Two[0]:.4f}*x² + {coefficients_Two[1]:.4f}*x + {coefficients_Two[2]:.4f}"
|
172 |
+
|
173 |
+
elif fit_typeTwo == "Cubic":
|
174 |
+
degree_Two = 3
|
175 |
+
coefficients_Two = np.polyfit(u, v, degree_Two)
|
176 |
+
v_fit = np.polyval(coefficients_Two, u)
|
177 |
+
r2_Two = r2_score(v, v_fit)
|
178 |
+
equation_Two = f"y = {coefficients_Two[0]:.4f}*x³ + {coefficients_Two[1]:.4f}*x² + {coefficients_Two[2]:.4f}*x + {coefficients_Two[3]:.4f}"
|
179 |
+
|
180 |
+
elif fit_typeTwo == "Exponential":
|
181 |
+
try:
|
182 |
+
log_v = np.log(v)
|
183 |
+
coefficients_Two = np.polyfit(u, log_v, 1)
|
184 |
+
d = np.exp(coefficients_Two[1])
|
185 |
+
e = coefficients_Two[0]
|
186 |
+
v_fit = d * np.exp(e * u)
|
187 |
+
r2_Two = r2_score(v, v_fit)
|
188 |
+
equation_Two = f"y = {d:.4f}*exp({e:.4f}*x)"
|
189 |
+
except ValueError:
|
190 |
+
st.error("Exponential fit failed. Ensure all Y values are positive.")
|
191 |
+
st.stop()
|
192 |
+
|
193 |
+
minimum = min(min(x), min(u))
|
194 |
+
maximum = max(max(x), max(u))
|
195 |
+
x_smooth = np.linspace(minimum, maximum, 500)
|
196 |
+
if fit_typeOne == "Logarithmic":
|
197 |
+
y_smooth = coefficients[0] * np.log(x_smooth) + coefficients[1]
|
198 |
+
elif fit_typeOne == "Linearithmic":
|
199 |
+
y_smooth = a * x_smooth * np.log(x_smooth) + b * x_smooth + c
|
200 |
+
elif fit_typeOne == "Exponential":
|
201 |
+
y_smooth = a * np.exp(b * x_smooth)
|
202 |
+
else:
|
203 |
+
y_smooth = np.polyval(coefficients, x_smooth)
|
204 |
+
|
205 |
+
u_smooth = np.linspace(minimum, maximum, 500)
|
206 |
+
if fit_typeTwo == "Logarithmic":
|
207 |
+
v_smooth = coefficients_Two[0] * np.log(u_smooth) + coefficients_Two[1]
|
208 |
+
elif fit_typeTwo == "Linearithmic":
|
209 |
+
v_smooth = d * u_smooth * np.log(u_smooth) + e * u_smooth + f
|
210 |
+
elif fit_typeTwo == "Exponential":
|
211 |
+
v_smooth = d * np.exp(e * u_smooth)
|
212 |
+
else:
|
213 |
+
v_smooth = np.polyval(coefficients_Two, u_smooth)
|
214 |
+
|
215 |
+
fig, ax = plt.subplots()
|
216 |
+
ax.scatter(x, y, color="red", label="Original Data One")
|
217 |
+
ax.scatter(u, v, color="blue", label="Original Data Two")
|
218 |
+
ax.plot(x_smooth, y_smooth, color="pink", label=f"{fit_typeOne} Fit (R²={r2:.4f})")
|
219 |
+
ax.plot(u_smooth, v_smooth, color="purple", label=f"{fit_typeTwo} Fit (R²={r2_Two:.4f})")
|
220 |
+
ax.set_xlabel(xlabel)
|
221 |
+
ax.set_ylabel(ylabel)
|
222 |
+
ax.legend()
|
223 |
+
ax.set_title("fit")
|
224 |
+
|
225 |
+
st.pyplot(fig)
|
226 |
+
|
227 |
+
st.write(f"**Fitted Equation One**: {equation}")
|
228 |
+
st.write(f"**R² Value One**: {r2:.6f}")
|
229 |
+
|
230 |
+
st.write(f"**Fitted Equation Two**: {equation_Two}")
|
231 |
+
st.write(f"**R² Value Two**: {r2_Two:.6f}")
|