Spaces:
Sleeping
Sleeping
############################################################################################################ | |
# | |
# Source from | |
# https://github.com/eugenesiow/practical-ml/blob/master/notebooks/Remove_Image_Background_DeepLabV3.ipynb | |
# | |
############################################################################################################ | |
import os | |
import cv2 | |
import torch | |
import PIL.Image | |
import numpy as np | |
import gradio as gr | |
import torchvision.transforms as transforms | |
os.system("pip freeze") | |
model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', weights='DEFAULT') | |
model.eval() | |
def image_to_tensor(image): | |
return transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
])(image) | |
def custom_background(background, foreground): | |
x = (background.size[0] - foreground.size[0]) / 2 | |
y = (background.size[1] - foreground.size[1]) / 2 | |
box = (x, y, foreground.size[0] + x, foreground.size[1] + y) | |
crop = background.crop(box) | |
final_image = crop.copy() | |
# put the foreground in the centre of the background | |
paste_box = (0, final_image.size[1] - foreground.size[1], final_image.size[0], final_image.size[1]) | |
final_image.paste(foreground, paste_box, mask=foreground) | |
return final_image | |
def make_transparent_foreground(image, mask): | |
# split the image into channels | |
b, g, r = cv2.split(np.array(image).astype('uint8')) | |
# add an alpha channel with and fill all with transparent pixels (max 255) | |
a = np.ones(mask.shape, dtype='uint8') * 255 | |
# merge the alpha channel back | |
alpha_im = cv2.merge([b, g, r, a], 4) | |
# create a transparent background | |
bg = np.zeros(alpha_im.shape) | |
# set up the new mask | |
new_mask = np.stack([mask, mask, mask, mask], axis=2) | |
# copy only the foreground color pixels from the original image where mask is set | |
return np.where(new_mask, alpha_im, bg).astype(np.uint8) | |
def makeMask(image): | |
input_tensor = image_to_tensor(image) | |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
# move the input and model to GPU for speed if available | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
with torch.no_grad(): | |
output = model(input_batch)['out'][0] | |
output_predictions = output.argmax(0) | |
# create a binary (black and white) mask of the profile foreground | |
mask = output_predictions.byte().cpu().numpy() | |
background = np.zeros(mask.shape) | |
return np.where(mask, 255, background).astype(np.uint8) | |
def predict(image, new_background=None): | |
mask = makeMask(image) | |
foreground = make_transparent_foreground(image, mask) | |
if new_background is not None: | |
foreground = PIL.Image.fromarray(foreground) | |
return custom_background(new_background, foreground) | |
return foreground | |
title = "Zero Background" | |
description = r""" | |
## Remove image background | |
This is another implementation of <a href='https://github.com/eugenesiow/practical-ml/blob/master/notebooks/Remove_Image_Background_DeepLabV3.ipynb' target='_blank'>eugenesiow</a>. | |
It has no any particular purpose than start research on AI models. | |
""" | |
article = r""" | |
Questions, doubts, comments, please email 📧 `[email protected]` | |
This demo is running on a CPU, if you like this project please make us a donation to run on a GPU or just give us a <a href='https://github.com/leonelhs/face-shine' target='_blank'>Github ⭐</a> | |
<a href="https://www.buymeacoffee.com/leonelhs"> | |
<img src="https://img.buymeacoffee.com/button-api/?text=Buy me a coffee&emoji=&slug=leonelhs&button_colour=FFDD00&font_colour=000000&font_family=Cookie&outline_colour=000000&coffee_colour=ffffff" /> | |
</a> | |
<center><img src='https://visitor-badge.glitch.me/badge?page_id=deoldify.visitor-badge' alt='visitor badge'></center> | |
""" | |
demo = gr.Interface( | |
predict, [ | |
gr.Image(type="pil", label="Image"), | |
gr.Image(type="pil", label="Optionally: Set a new background") | |
], [ | |
gr.Image(type="pil", label="Image alpha background") | |
], | |
title=title, | |
description=description, | |
article=article) | |
demo.queue().launch() | |