leonelhs commited on
Commit
9b87edc
·
1 Parent(s): 24a72e1

init space

Browse files
Files changed (4) hide show
  1. .gitignore +4 -0
  2. app.py +76 -0
  3. estimator.py +47 -0
  4. requirements.txt +2 -0
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ .idea/
2
+ __pycache__/
3
+ checkpoints
4
+ results
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIFuHD.data import EvalWMetaDataset
4
+ from PIFuHD.data.ImageBundle import ImageBundle
5
+ from PIFuHD.options import BaseOptions
6
+ from PIFuHD.recontructor import Reconstructor
7
+ from huggingface_hub import hf_hub_download
8
+ from human_pose_estimator import PoseEstimator
9
+ from estimator import rect
10
+
11
+ REPO_ID = "cxeep/PIFuHD"
12
+
13
+ pose_estimator = PoseEstimator("cpu")
14
+
15
+ checkpoint_path = hf_hub_download(repo_id=REPO_ID, filename="pifuhd.pt")
16
+
17
+ cmd = [
18
+ '--dataroot', './data',
19
+ '--results_path', './results',
20
+ '--loadSize', '1024',
21
+ '--resolution', '256',
22
+ '--load_netMR_checkpoint_path', checkpoint_path,
23
+ '--start_id', '-1',
24
+ '--end_id', '-1'
25
+ ]
26
+
27
+ parser = BaseOptions()
28
+ opts = parser.parse(cmd)
29
+ reconstructor = Reconstructor(opts)
30
+
31
+
32
+ def make_bundle(image, name):
33
+ image, rects = rect(pose_estimator, image)
34
+ return ImageBundle(img=image, name=name, meta=rects)
35
+
36
+
37
+ def predict(img: np.ndarray):
38
+ bundle = make_bundle(img, "Model3D")
39
+ dataset = EvalWMetaDataset(opts, [bundle])
40
+ img, model = reconstructor.evaluate(dataset)
41
+ return img, model, model
42
+
43
+
44
+ footer = r"""
45
+ <center>
46
+ <b>
47
+ Demo for <a href='https://github.com/facebookresearch/pifuhd'>PIFuHD</a>
48
+ </b>
49
+ </center>
50
+ """
51
+
52
+ with gr.Blocks(title="PIFuHD") as app:
53
+ gr.HTML("<center><h1>3D Human Digitization</h1></center>")
54
+ gr.HTML("<center><h3>PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020)</h3></center>")
55
+ with gr.Row(equal_height=False):
56
+ with gr.Column():
57
+ input_img = gr.Image(type="numpy", label="Input image")
58
+ run_btn = gr.Button(variant="primary")
59
+ with gr.Column():
60
+ output_obj = gr.Model3D(label="Output model")
61
+ output_img = gr.Image(type="filepath", label="Output image")
62
+ output_file = gr.File(label="Download 3D Model")
63
+ gr.ClearButton(components=[input_img, output_img, output_obj, output_file], variant="stop")
64
+
65
+ run_btn.click(predict, [input_img], [output_img, output_obj, output_file])
66
+
67
+ with gr.Row():
68
+ blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
69
+ examples = gr.Dataset(components=[input_img], samples=blobs)
70
+ examples.click(lambda x: x[0], [examples], [input_img])
71
+
72
+ with gr.Row():
73
+ gr.HTML(footer)
74
+
75
+ app.launch(share=False, debug=True, show_error=True)
76
+ app.queue()
estimator.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from human_pose_estimator.modules.pose import Pose
3
+
4
+
5
+ def rect(estimator, img: np.ndarray, height_size=512):
6
+ num_keypoints = Pose.num_kpts
7
+ _, pose_entries, all_keypoints = estimator.get_poses(img, height_size)
8
+
9
+ rects = []
10
+ for n in range(len(pose_entries)):
11
+ if len(pose_entries[n]) == 0:
12
+ continue
13
+ pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
14
+
15
+ valid_keypoints = []
16
+ for kpt_id in range(num_keypoints):
17
+ if pose_entries[n][kpt_id] != -1.0: # keypoint was found
18
+ pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
19
+ pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
20
+ valid_keypoints.append([pose_keypoints[kpt_id, 0], pose_keypoints[kpt_id, 1]])
21
+ valid_keypoints = np.array(valid_keypoints)
22
+
23
+ if pose_entries[n][10] != -1.0 or pose_entries[n][13] != -1.0:
24
+ pmin = valid_keypoints.min(0)
25
+ pmax = valid_keypoints.max(0)
26
+
27
+ center = (0.5 * (pmax[:2] + pmin[:2])).astype(np.int32)
28
+ radius = int(0.65 * max(pmax[0] - pmin[0], pmax[1] - pmin[1]))
29
+ elif pose_entries[n][10] == -1.0 and pose_entries[n][13] == -1.0 and pose_entries[n][8] != -1.0 and \
30
+ pose_entries[n][11] != -1.0:
31
+ # if leg is missing, use pelvis to get cropping
32
+ center = (0.5 * (pose_keypoints[8] + pose_keypoints[11])).astype(np.int32)
33
+ radius = int(1.45 * np.sqrt(((center[None, :] - valid_keypoints) ** 2).sum(1)).max(0))
34
+ center[1] += int(0.05 * radius)
35
+ else:
36
+ center = np.array([img.shape[1] // 2, img.shape[0] // 2])
37
+ radius = max(img.shape[1] // 2, img.shape[0] // 2)
38
+
39
+ x1 = center[0] - radius
40
+ y1 = center[1] - radius
41
+
42
+ rects.append([x1, y1, 2 * radius, 2 * radius])
43
+
44
+ return img, rects
45
+
46
+
47
+
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ pifu-hd
2
+ human_pose_estimator