Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,144 +1,148 @@
|
|
|
|
1 |
import os
|
2 |
from pathlib import Path
|
3 |
import torch
|
4 |
-
from
|
|
|
|
|
|
|
|
|
5 |
from optimum.intel.openvino import OVModelForCausalLM
|
6 |
import openvino as ov
|
7 |
import openvino.properties as props
|
8 |
import openvino.properties.hint as hints
|
9 |
import openvino.properties.streams as streams
|
10 |
-
import gradio as gr
|
11 |
|
|
|
12 |
from llm_config import SUPPORTED_LLM_MODELS
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
int4_model_dir
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
input_ids = convert_history_to_token(history)
|
|
|
|
|
|
|
|
|
|
|
61 |
generate_kwargs = dict(
|
62 |
input_ids=input_ids,
|
63 |
max_new_tokens=256,
|
64 |
temperature=temperature,
|
|
|
65 |
top_p=top_p,
|
66 |
top_k=top_k,
|
67 |
-
repetition_penalty=repetition_penalty
|
68 |
-
|
69 |
-
|
70 |
-
# Stream response to textbox
|
71 |
-
response = ""
|
72 |
-
for new_text in ov_model.generate(**generate_kwargs):
|
73 |
-
response += new_text
|
74 |
-
history[-1][1] = response
|
75 |
-
yield history
|
76 |
-
|
77 |
-
# Define Gradio interface within a Blocks context
|
78 |
-
with gr.Blocks() as iface:
|
79 |
-
# Dropdown for model language selection
|
80 |
-
model_language = gr.Dropdown(
|
81 |
-
choices=model_languages,
|
82 |
-
value=model_languages[0],
|
83 |
-
label="Model Language"
|
84 |
-
)
|
85 |
-
|
86 |
-
# Dropdown for model ID, dynamically populated
|
87 |
-
model_id = gr.Dropdown(
|
88 |
-
choices=[], # will be populated dynamically
|
89 |
-
label="Model",
|
90 |
-
value=None
|
91 |
)
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
)
|
105 |
-
|
106 |
-
# Checkbox for enabling AWQ (shown conditionally)
|
107 |
-
enable_awq = gr.Checkbox(
|
108 |
-
value=False,
|
109 |
-
label="Enable AWQ",
|
110 |
-
visible=False # visibility can be controlled in the UI logic
|
111 |
-
)
|
112 |
-
|
113 |
-
# Dropdown for device selection
|
114 |
-
device = gr.Dropdown(
|
115 |
-
choices=["CPU", "GPU"],
|
116 |
-
value="CPU",
|
117 |
-
label="Device"
|
118 |
-
)
|
119 |
-
|
120 |
-
# Sliders for model generation parameters
|
121 |
-
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
122 |
-
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
123 |
-
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
124 |
-
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
|
125 |
-
|
126 |
-
# Conversation history state
|
127 |
-
history = gr.State([])
|
128 |
-
|
129 |
-
# Textbox for conversation history
|
130 |
-
conversation_output = gr.Textbox(label="Conversation History")
|
131 |
-
|
132 |
-
# Button to trigger response generation
|
133 |
-
generate_button = gr.Button("Generate Response")
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
generate_response,
|
138 |
-
inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id, device],
|
139 |
-
outputs=[conversation_output, history]
|
140 |
-
)
|
141 |
|
142 |
-
#
|
|
|
143 |
if __name__ == "__main__":
|
144 |
-
|
|
|
1 |
+
# app.py
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
import torch
|
5 |
+
from threading import Event, Thread
|
6 |
+
from typing import List, Tuple
|
7 |
+
|
8 |
+
# Importing necessary packages
|
9 |
+
from transformers import AutoConfig, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
10 |
from optimum.intel.openvino import OVModelForCausalLM
|
11 |
import openvino as ov
|
12 |
import openvino.properties as props
|
13 |
import openvino.properties.hint as hints
|
14 |
import openvino.properties.streams as streams
|
|
|
15 |
|
16 |
+
from gradio_helper import make_demo # UI logic import
|
17 |
from llm_config import SUPPORTED_LLM_MODELS
|
18 |
|
19 |
+
# Model configuration setup
|
20 |
+
model_language_value = "English"
|
21 |
+
model_id_value = 'qwen2.5-0.5b-instruct'
|
22 |
+
prepare_int4_model_value = True
|
23 |
+
enable_awq_value = False
|
24 |
+
device_value = 'CPU'
|
25 |
+
model_to_run_value = 'INT4'
|
26 |
+
pt_model_id = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]["model_id"]
|
27 |
+
pt_model_name = model_id_value.split("-")[0]
|
28 |
+
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
29 |
+
int4_weights = int4_model_dir / "openvino_model.bin"
|
30 |
+
|
31 |
+
# Model loading
|
32 |
+
core = ov.Core()
|
33 |
+
ov_config = {
|
34 |
+
hints.performance_mode(): hints.PerformanceMode.LATENCY,
|
35 |
+
streams.num(): "1",
|
36 |
+
props.cache_dir(): ""
|
37 |
+
}
|
38 |
+
tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
|
39 |
+
ov_model = OVModelForCausalLM.from_pretrained(
|
40 |
+
int4_model_dir,
|
41 |
+
device=device_value,
|
42 |
+
ov_config=ov_config,
|
43 |
+
config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
|
44 |
+
trust_remote_code=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
# Stopping criteria for token generation
|
48 |
+
class StopOnTokens(StoppingCriteria):
|
49 |
+
def __init__(self, token_ids):
|
50 |
+
self.token_ids = token_ids
|
51 |
+
|
52 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
53 |
+
return any(input_ids[0][-1] == stop_id for stop_id in self.token_ids)
|
54 |
+
|
55 |
+
# Functions for chatbot logic
|
56 |
+
def convert_history_to_token(history: List[Tuple[str, str]]):
|
57 |
+
"""
|
58 |
+
function for conversion history stored as list pairs of user and assistant messages to tokens according to model expected conversation template
|
59 |
+
Params:
|
60 |
+
history: dialogue history
|
61 |
+
Returns:
|
62 |
+
history in token format
|
63 |
+
"""
|
64 |
+
if pt_model_name == "baichuan2":
|
65 |
+
system_tokens = tok.encode(start_message)
|
66 |
+
history_tokens = []
|
67 |
+
for old_query, response in history[:-1]:
|
68 |
+
round_tokens = []
|
69 |
+
round_tokens.append(195)
|
70 |
+
round_tokens.extend(tok.encode(old_query))
|
71 |
+
round_tokens.append(196)
|
72 |
+
round_tokens.extend(tok.encode(response))
|
73 |
+
history_tokens = round_tokens + history_tokens
|
74 |
+
input_tokens = system_tokens + history_tokens
|
75 |
+
input_tokens.append(195)
|
76 |
+
input_tokens.extend(tok.encode(history[-1][0]))
|
77 |
+
input_tokens.append(196)
|
78 |
+
input_token = torch.LongTensor([input_tokens])
|
79 |
+
elif history_template is None or has_chat_template:
|
80 |
+
messages = [{"role": "system", "content": start_message}]
|
81 |
+
for idx, (user_msg, model_msg) in enumerate(history):
|
82 |
+
if idx == len(history) - 1 and not model_msg:
|
83 |
+
messages.append({"role": "user", "content": user_msg})
|
84 |
+
break
|
85 |
+
if user_msg:
|
86 |
+
messages.append({"role": "user", "content": user_msg})
|
87 |
+
if model_msg:
|
88 |
+
messages.append({"role": "assistant", "content": model_msg})
|
89 |
+
|
90 |
+
input_token = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_tensors="pt")
|
91 |
+
else:
|
92 |
+
text = start_message + "".join(
|
93 |
+
["".join([history_template.format(num=round, user=item[0], assistant=item[1])]) for round, item in enumerate(history[:-1])]
|
94 |
+
)
|
95 |
+
text += "".join(
|
96 |
+
[
|
97 |
+
"".join(
|
98 |
+
[
|
99 |
+
current_message_template.format(
|
100 |
+
num=len(history) + 1,
|
101 |
+
user=history[-1][0],
|
102 |
+
assistant=history[-1][1],
|
103 |
+
)
|
104 |
+
]
|
105 |
+
)
|
106 |
+
]
|
107 |
+
)
|
108 |
+
input_token = tok(text, return_tensors="pt", **tokenizer_kwargs).input_ids
|
109 |
+
return input_token
|
110 |
+
|
111 |
+
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
|
112 |
+
# Callback function for running chatbot on submit button click
|
113 |
input_ids = convert_history_to_token(history)
|
114 |
+
if input_ids.shape[1] > 2000:
|
115 |
+
history = [history[-1]]
|
116 |
+
input_ids = convert_history_to_token(history)
|
117 |
+
|
118 |
+
streamer = TextIteratorStreamer(tok, timeout=3600.0, skip_prompt=True, skip_special_tokens=True)
|
119 |
generate_kwargs = dict(
|
120 |
input_ids=input_ids,
|
121 |
max_new_tokens=256,
|
122 |
temperature=temperature,
|
123 |
+
do_sample=temperature > 0.0,
|
124 |
top_p=top_p,
|
125 |
top_k=top_k,
|
126 |
+
repetition_penalty=repetition_penalty,
|
127 |
+
streamer=streamer,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
)
|
129 |
+
stream_complete = Event()
|
130 |
|
131 |
+
def generate_and_signal_complete():
|
132 |
+
ov_model.generate(**generate_kwargs)
|
133 |
+
stream_complete.set()
|
|
|
134 |
|
135 |
+
Thread(target=generate_and_signal_complete).start()
|
136 |
+
partial_text = ""
|
137 |
+
for new_text in streamer:
|
138 |
+
partial_text += new_text
|
139 |
+
history[-1][1] = partial_text
|
140 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
def request_cancel():
|
143 |
+
ov_model.request.cancel()
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
# Gradio setup and launch
|
146 |
+
demo = make_demo(run_fn=bot, stop_fn=request_cancel, title=f"OpenVINO {model_id_value} Chatbot", language=model_language_value)
|
147 |
if __name__ == "__main__":
|
148 |
+
demo.launch(debug=True, share=True, server_name="0.0.0.0", server_port=7860)
|