Spaces:
Running
Running
File size: 1,403 Bytes
ebac87f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import type { Tensor } from "@xenova/transformers";
import { pipeline, dot } from "@xenova/transformers";
// see here: https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/README.md?plain=1#L34
function innerProduct(tensor1: Tensor, tensor2: Tensor) {
return 1.0 - dot(tensor1.data, tensor2.data);
}
const extractor = await pipeline("feature-extraction", "Xenova/e5-small-v2");
export async function findSimilarSentences(
query: string,
sentences: string[],
{ topK = 5 }: { topK: number }
) {
// this preprocessing step is suggested for e5-small-v2 model
// see more: https://huggingface.co/intfloat/e5-small-v2/blob/main/README.md?code=true#L2631
const input = [`query: ${query}`, ...sentences.map((s) => `passage: ${s}`)];
const output: Tensor = await extractor(input, { pooling: "mean", normalize: true });
const queryTensor: Tensor = output[0];
const sentencesTensor: Tensor = output.slice([1, input.length - 1]);
const distancesFromQuery: { distance: number; index: number }[] = [...sentencesTensor].map(
(sentenceTensor: Tensor, index: number) => {
return {
distance: innerProduct(queryTensor, sentenceTensor),
index: index,
};
}
);
distancesFromQuery.sort((a, b) => {
return a.distance - b.distance;
});
// Return the indexes of the closest topK sentences
return distancesFromQuery.slice(0, topK).map((item) => item.index);
}
|