Spaces:
Running
Running
import type { Tensor, Pipeline } from "@xenova/transformers"; | |
import { pipeline, dot } from "@xenova/transformers"; | |
// see here: https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/README.md?plain=1#L34 | |
function innerProduct(tensor1: Tensor, tensor2: Tensor) { | |
return 1.0 - dot(tensor1.data, tensor2.data); | |
} | |
// Use the Singleton pattern to enable lazy construction of the pipeline. | |
class PipelineSingleton { | |
static modelId = "Xenova/gte-small"; | |
static instance: Promise<Pipeline> | null = null; | |
static async getInstance() { | |
if (this.instance === null) { | |
this.instance = pipeline("feature-extraction", this.modelId); | |
} | |
return this.instance; | |
} | |
} | |
// see https://huggingface.co/thenlper/gte-small/blob/d8e2604cadbeeda029847d19759d219e0ce2e6d8/README.md?code=true#L2625 | |
export const MAX_SEQ_LEN = 512 as const; | |
export async function findSimilarSentences( | |
query: string, | |
sentences: string[], | |
{ topK = 5 }: { topK: number } | |
) { | |
const input = [query, ...sentences]; | |
const extractor = await PipelineSingleton.getInstance(); | |
const output: Tensor = await extractor(input, { pooling: "mean", normalize: true }); | |
const queryTensor: Tensor = output[0]; | |
const sentencesTensor: Tensor = output.slice([1, input.length - 1]); | |
const distancesFromQuery: { distance: number; index: number }[] = [...sentencesTensor].map( | |
(sentenceTensor: Tensor, index: number) => { | |
return { | |
distance: innerProduct(queryTensor, sentenceTensor), | |
index: index, | |
}; | |
} | |
); | |
distancesFromQuery.sort((a, b) => { | |
return a.distance - b.distance; | |
}); | |
// Return the indexes of the closest topK sentences | |
return distancesFromQuery.slice(0, topK).map((item) => item.index); | |
} | |