DmitrMakeev's picture
Update app.py
518ef32
import gradio as gr
import torch
import modin.pandas as pd
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000}
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner.enable_sequential_cpu_offload()
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
pipe = pipe.to(device)
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True)
refiner = refiner.to(device)
def genie (prompt, negative_prompt, height, width, scale, steps, seed, strength):
generator = torch.Generator(device=device).manual_seed(seed)
int_image = pipe(prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0]
return image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='Что вы хотите, чтобы ИИ генерировал'),
gr.Textbox(label='Что вы не хотите, чтобы ИИ генерировал'),
gr.Slider(512, 1024, 768, step=128, label='Высота'),
gr.Slider(512, 1024, 768, step=128, label='Ширина'),
gr.Slider(1, 15, 10, label='Шкала навигации'),
gr.Slider(25, maximum=50, value=25, step=1, label='Количество итераций'),
gr.Slider(label="Зерно", minimum=0, maximum=987654321987654321, step=1, randomize=True),
gr.Slider(label='Сила', minimum=0, maximum=1, step=.05, value=.5)],
outputs='image',
title="Стабильная Диффузия - SDXL - txt2img",
article = "<br><br><br><br><br>").launch(debug=True, max_threads=80)