Spaces:
Sleeping
Sleeping
File size: 8,777 Bytes
ac8a60b 8434471 ac8a60b 8434471 ac8a60b 8434471 69e20d0 ac8a60b 8434471 8c107a7 69e20d0 8434471 69e20d0 8434471 ac8a60b 8434471 69e20d0 8434471 69e20d0 8434471 69e20d0 ac8a60b 69e20d0 ac8a60b 8434471 be36d9d b580d80 c81f36b be36d9d ac8a60b c81f36b ac8a60b 5ea4259 69e20d0 ac8a60b 5ea4259 8434471 5ea4259 c81f36b 5ea4259 8434471 ac8a60b 5ea4259 ac8a60b 8434471 69e20d0 c81f36b 5ea4259 354a5a9 5ea4259 c81f36b be36d9d 5ea4259 be36d9d c81f36b 8c107a7 5ea4259 8c107a7 5ea4259 8c107a7 5ea4259 8c107a7 5ea4259 c81f36b 8c107a7 c81f36b 5ea4259 c81f36b 8c107a7 5ea4259 8c107a7 5ea4259 c81f36b 8434471 8c107a7 8434471 ac8a60b 8434471 ac8a60b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import sqlite3
import streamlit as st
from pydantic import BaseModel, Field
from llama_index.core.tools import FunctionTool
import time
db_path = "./database/mock_qna.sqlite"
qna_question_description = """
Only trigger this when user wants to be tested with a question.
Use this tool to extract the chapter number from the body of input text,
thereafter, chapter number will be used as a filtering criteria for
extracting the right questions set from database.
Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.
If no chapter number specified or user requested for random question,
or user has no preference over which chapter of textbook to be tested,
set function argument `chapter_n` to be `Chapter_0`.
"""
qna_question_data_format = """
The format of the function argument `chapter_n` looks as follow:
It should be in the format with `Chapter_` as prefix.
Example 1: `Chapter_1` for first chapter
Example 2: For chapter 12 of the textbook, you should return `Chapter_12`
Example 3: `Chapter_5` for fifth chapter
"""
qna_answer_description = """
Not to trigger this when questions being asked, come directly from user.
Only use this tool to trigger the evaluation of user's provided input with the
correct answer of the Q&A question asked by Assistant. When user provides
answer to the question asked, they can reply in natural language or giving
the alphabet letter of which selected choice they think it's the right answer.
If user's answer is not a single alphabet letter, but is contextually
closer to a particular answer choice, return the corresponding
alphabet A, B, C, D or Z for which the answer's meaning is closest to.
Thereafter, the `user_selected_answer` argument will be passed to the
function for Q&A question evaluation.
"""
qna_answer_data_format = """
The format of the function argument `user_selected_answer` looks as follow:
It should be in the format of single character such as `A`, `B`, `C`, `D` or `Z`.
Example 1: User's answer is `a`, it means choice `A`.
Example 2: User's answer is contextually closer to 3rd answer choice, it means `C`.
Example 3: User says last is the answer, it means `D`.
Example 4: If user doesn't know about the answer, it means `Z`.
"""
class Question_Model(BaseModel):
chapter_n: str = Field(...,
pattern=r'^Chapter_\d*$',
description=qna_question_data_format
)
class Answer_Model(BaseModel):
user_selected_answer: str = Field(...,
pattern=r'^[ABCDZ]$',
description=qna_answer_data_format
)
def get_qna_question(chapter_n: str) -> str:
con = sqlite3.connect(db_path)
cur = con.cursor()
filter_clause = "WHERE a.question_id IS NULL" \
if chapter_n == "Chapter_0" \
else f"WHERE a.question_id IS NULL AND chapter='{chapter_n}'"
sql_string = f"""SELECT q.id, question, option_1, option_2, option_3, option_4, q.correct_answer, q.reasoning
FROM qna_tbl q LEFT JOIN
(SELECT *
FROM answer_tbl
WHERE user_id = '{st.session_state.user_id}') a
ON q.id = a.question_id
""" + filter_clause
# sql_string = sql_string + " ORDER BY RANDOM() LIMIT 1"
res = cur.execute(sql_string)
result = res.fetchone()
id = result[0]
question = result[1]
option_1 = result[2]
option_2 = result[3]
option_3 = result[4]
option_4 = result[5]
c_answer = result[6]
reasons = result[7]
c_answer = int(c_answer)
option_dict = {
1: option_1,
2: option_2,
3: option_3,
4: option_4
}
qna_answer_str = option_dict.get(c_answer, "NA")
qna_str = "As requested, here is the retrieved question: \n" + \
"============================================= \n" + \
question.replace("\\n", "\n") + "\n" + \
"A) " + option_1 + "\n" + \
"B) " + option_2 + "\n" + \
"C) " + option_3 + "\n" + \
"D) " + option_4 + "\n"
system_prompt = (
"#### System prompt to assistant #### \n"
"Be reminded to ask user the question \n"
"#################################### \n"
)
st.session_state.question_id = id
st.session_state.qna_answer_int = c_answer
st.session_state.reasons = reasons
st.session_state.qna_answer_str = qna_answer_str
con.close()
return qna_str + system_prompt
def evaluate_qna_answer(user_selected_answer: str) -> str:
try:
answer_mapping = {
"A": 1,
"B": 2,
"C": 3,
"D": 4,
"Z": 0
}
num_mapping = dict((v,k) for k,v in answer_mapping.items())
user_answer_numeric = answer_mapping.get(user_selected_answer, 0)
question_id = st.session_state.question_id
qna_answer_int = st.session_state.qna_answer_int
reasons = st.session_state.reasons
qna_answer_str = st.session_state.qna_answer_str
### convert to numeric type
qna_answer_int = int(qna_answer_int)
qna_answer_alphabet = num_mapping.get(qna_answer_int, "ERROR")
con = sqlite3.connect(db_path)
cur = con.cursor()
sql_string = f"""INSERT INTO answer_tbl
VALUES ('{st.session_state.user_id}',
{question_id},
{qna_answer_int},
{user_answer_numeric})
"""
res = cur.execute(sql_string)
con.commit()
con.close()
reasoning = "" if "textbook" in reasons else f"Rationale is that: {reasons}. "
qna_answer_response = (
f"Your selected answer is `{user_selected_answer}`, "
f"but the actual answer is `{qna_answer_alphabet}`) {qna_answer_str}. "
)
qna_not_knowing_response = (
f"No problem! The answer is `{qna_answer_alphabet}`. "
f"Let me explain to you why the correct answer is '{qna_answer_str}'. "
)
to_know_more = (
"######## System prompt to assistant ######### \n"
"Be reminded to provide explanation to user \n"
"############################################# \n"
)
if user_answer_numeric == 0:
st.toast("π―β couldn't find the honey? π no worries!", icon="π« ")
time.sleep(2)
st.toast("π» Let me bring it to you! π―π", icon="π")
time.sleep(2)
st.toast("β¨ You will do great next time! π", icon="π")
final_response = qna_not_knowing_response + reasoning + to_know_more
elif qna_answer_int == user_answer_numeric:
st.toast("π― yummy yummy, hooray!", icon="π")
time.sleep(2)
st.toast("π»ππ― You got it right!", icon="π")
time.sleep(2)
st.toast("π₯ You are amazing! π―π―", icon="πͺ")
st.balloons()
final_response = qna_answer_response + reasoning + to_know_more
else:
st.toast("πΌ Something doesn't feel right.. π₯π π₯", icon="π")
time.sleep(2)
st.toast("π₯Ά Are you sure..? π¬π¬", icon="π")
time.sleep(2)
st.toast("π€π€ Nevertheless, it was a good try!! ποΈββοΈποΈββοΈ", icon="π")
st.snow()
final_response = qna_answer_response + reasoning + to_know_more
st.session_state.question_id = None
st.session_state.qna_answer_int = None
st.session_state.reasons = None
st.session_state.qna_answer_str = None
except Exception as e:
print(e)
return final_response
get_qna_question_tool = FunctionTool.from_defaults(
fn=get_qna_question,
name="Extract_Question",
description=qna_question_description,
fn_schema=Question_Model
)
evaluate_qna_answer_tool = FunctionTool.from_defaults(
fn=evaluate_qna_answer,
name="Evaluate_Answer",
description=qna_answer_description,
fn_schema=Answer_Model
) |