Spaces:
Sleeping
Sleeping
File size: 14,919 Bytes
db694c4 b034166 db694c4 b2b3b83 dec332b 9b5e886 be36d9d e29216a db694c4 bd54294 ac8a60b db694c4 dec332b 8434471 be36d9d 23e06a5 ac8a60b dec332b b2b3b83 db694c4 9b5e886 a561bc6 db694c4 e29216a 47e9340 b2b3b83 69e20d0 db694c4 69e20d0 be36d9d a561bc6 d026604 db694c4 d026604 db694c4 d026604 a561bc6 d026604 db694c4 d026604 c81f36b 6ba18f0 c81f36b 3557a96 b2b3b83 d026604 db694c4 47e9340 dec332b b034166 47e9340 e29216a db694c4 d026604 69e20d0 dec332b db694c4 b034166 dec332b db694c4 8434471 c81f36b be36d9d db694c4 9b5e886 d026604 69e20d0 dec332b 47e9340 bd54294 ac8a60b 47e9340 9b5e886 be36d9d 9b5e886 be36d9d 9b5e886 b034166 d026604 be36d9d b034166 db694c4 47e9340 bd54294 47e9340 bd54294 ac8a60b bd54294 47e9340 bd54294 ac8a60b bd54294 ac8a60b bd54294 ac8a60b bd54294 ac8a60b bd54294 ac8a60b bd54294 69e20d0 ac8a60b 69e20d0 ac8a60b db694c4 8434471 69e20d0 8434471 69e20d0 8434471 69e20d0 ac8a60b 69e20d0 8434471 ac8a60b 8434471 ac8a60b 8434471 ac8a60b 8434471 ac8a60b 69e20d0 ac8a60b 47e9340 bd54294 ac8a60b 47e9340 ac8a60b 47e9340 b034166 dec332b 47e9340 dec332b 47e9340 dec332b 69e20d0 dec332b db694c4 dec332b 69e20d0 db694c4 dec332b e29216a dec332b db694c4 69e20d0 e29216a 69e20d0 e29216a ac8a60b db694c4 d026604 47e9340 69e20d0 47e9340 db694c4 b034166 dec332b b034166 dec332b b034166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import streamlit as st
from streamlit_feedback import streamlit_feedback
import os
import pandas as pd
import base64
from io import BytesIO
import sqlite3
import uuid
import yaml
import chromadb
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
Document
)
from llama_index.vector_stores.chroma.base import ChromaVectorStore
from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.tools import QueryEngineTool
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import Settings
from vision_api import get_transcribed_text
from qna_prompting import get_qna_question_tool, evaluate_qna_answer_tool
from prompt_engineering import (
system_content,
textbook_content,
winnie_the_pooh_prompt,
introduction_line
)
import nest_asyncio
nest_asyncio.apply()
# App title
st.set_page_config(page_title="π»π Study Bear π―")
openai_api = os.getenv("OPENAI_API_KEY")
with open("./config/model_config.yml", "r") as file_reader:
model_config = yaml.safe_load(file_reader)
input_files = model_config["input_data"]["source"]
embedding_model = model_config["embeddings"]["embedding_base_model"]
fine_tuned_path = model_config["embeddings"]["fine_tuned_embedding_model"]
persisted_vector_db = model_config["vector_store"]["persisted_path"]
questionaire_db_path = model_config["questionaire_data"]["db_path"]
data_df = pd.DataFrame(
{
"Completion": [30, 40, 100, 10],
}
)
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]
bear_img_path = "./resource/disney-cuties-little-winnie-the-pooh-emoticon.png"
piglet_img_path = "./resource/disney-cuties-piglet-emoticon.png"
# Replicate Credentials
with st.sidebar:
st.title("π―π Study Bear π»π")
st.write("Just like Pooh needs honey, success requires hard work β no shortcuts allowed!")
wtp_mode = st.toggle('Winnie-the-Pooh mode', value=False)
if wtp_mode:
system_content = system_content + winnie_the_pooh_prompt
textbook_content = system_content + textbook_content
if openai_api:
pass
elif "OPENAI_API_KEY" in st.secrets:
st.success("API key already provided!", icon="β
")
openai_api = st.secrets["OPENAI_API_KEY"]
else:
openai_api = st.text_input("Enter OpenAI API token:", type="password")
if not (openai_api.startswith("sk-") and len(openai_api)==51):
st.warning("Please enter your credentials!", icon="β οΈ")
else:
st.success("Proceed to entering your prompt message!", icon="π")
### for streamlit purpose
os.environ["OPENAI_API_KEY"] = openai_api
st.subheader("Models and parameters")
selected_model = st.sidebar.selectbox(label="Choose an OpenAI model",
options=["gpt-3.5-turbo-0125", "gpt-4-0125-preview"],
index=1,
key="selected_model")
temperature = st.sidebar.slider("temperature", min_value=0.0, max_value=2.0,
value=0.0, step=0.01)
st.data_editor(
data_df,
column_config={
"Completion": st.column_config.ProgressColumn(
"Completion %",
help="Percentage of content covered",
format="%.1f%%",
min_value=0,
max_value=100,
),
},
hide_index=False,
)
st.markdown("π Reach out to SakiMilo to learn how to create this app!")
if "init" not in st.session_state.keys():
st.session_state.init = {"warm_started": "No"}
st.session_state.feedback = False
if "image_prompt" not in st.session_state.keys():
st.session_state.image_prompt = False
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant",
"content": introduction_line,
"type": "text"}]
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
if "release_file" not in st.session_state:
st.session_state.release_file = "false"
if "question_id" not in st.session_state:
st.session_state.question_id = None
if "qna_answer" not in st.session_state:
st.session_state.qna_answer = None
if "reasons" not in st.session_state:
st.session_state.reasons = None
if "user_id" not in st.session_state:
st.session_state.user_id = str(uuid.uuid4())
def clear_chat_history():
st.session_state.messages = [{"role": "assistant",
"content": introduction_line,
"type": "text"}]
chat_engine = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
fine_tuned_path=fine_tuned_path,
system_content=system_content,
persisted_vector_db=persisted_vector_db)
chat_engine.reset()
st.toast("yumyum, what was I saying again? π»π¬", icon="π―")
def clear_question_history(user_id):
con = sqlite3.connect(questionaire_db_path)
cur = con.cursor()
sql_string = f"""
DELETE FROM answer_tbl
WHERE user_id='{user_id}'
"""
res = cur.execute(sql_string)
con.commit()
con.close()
st.toast("the tale of one thousand and one questions, reset! π§¨π§¨", icon="π")
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
st.sidebar.button("Clear Question History",
on_click=clear_question_history,
kwargs={"user_id": st.session_state.user_id})
if st.sidebar.button("I want to submit a feedback!"):
st.session_state.feedback = True
st.session_state.feedback_key += 1 # overwrite feedback component
@st.cache_resource
def get_document_object(input_files):
documents = SimpleDirectoryReader(input_files=input_files).load_data()
document = Document(text="\n\n".join([doc.text for doc in documents]))
return document
@st.cache_resource
def get_llm_object(selected_model, temperature):
llm = OpenAI(model=selected_model, temperature=temperature)
return llm
@st.cache_resource
def get_embedding_model(model_name, fine_tuned_path=None):
if fine_tuned_path is None:
print(f"loading from `{model_name}` from huggingface")
embed_model = HuggingFaceEmbedding(model_name=model_name)
else:
print(f"loading from local `{fine_tuned_path}`")
embed_model = fine_tuned_path
return embed_model
@st.cache_resource
def get_query_engine(input_files, llm_model, temperature,
embedding_model, fine_tuned_path,
system_content, persisted_vector_db):
llm = get_llm_object(llm_model, temperature)
embedded_model = get_embedding_model(
model_name=embedding_model,
fine_tuned_path=fine_tuned_path
)
Settings.llm = llm
Settings.chunk_size = 1024
Settings.embed_model = embedded_model
if os.path.exists(persisted_vector_db):
print("loading from vector database - chroma")
db = chromadb.PersistentClient(path=persisted_vector_db)
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
storage_context=storage_context
)
else:
print("create new chroma vector database..")
documents = SimpleDirectoryReader(input_files=input_files).load_data()
db = chromadb.PersistentClient(path=persisted_vector_db)
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(nodes, storage_context=storage_context)
memory = ChatMemoryBuffer.from_defaults(token_limit=100_000)
hi_content_engine = index.as_query_engine(
memory=memory,
system_prompt=system_content,
similarity_top_k=10,
verbose=True,
streaming=True
)
hi_textbook_query_description = """
Use this tool to extract content from the query engine,
which is built by ingesting textbook content from `Health Insurance 7th Edition`,
that has 15 chapters in total. When user wants to learn more about a
particular chapter, this tool will help to assist user to get better
understanding of the content of the textbook.
"""
hi_query_tool = QueryEngineTool.from_defaults(
query_engine=hi_content_engine,
name="health_insurance_textbook_query_engine",
description=hi_textbook_query_description
)
agent = OpenAIAgent.from_tools(tools=[
hi_query_tool,
get_qna_question_tool,
evaluate_qna_answer_tool
],
max_function_calls=1,
llm=llm,
verbose=True,
system_prompt=textbook_content)
print("loaded AI agent, let's begin the chat!")
print("="*50)
print("")
return agent
def generate_llm_response(prompt_input, tool_choice="auto"):
chat_agent = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
fine_tuned_path=fine_tuned_path,
system_content=system_content,
persisted_vector_db=persisted_vector_db)
# st.session_state.messages
response = chat_agent.stream_chat(prompt_input, tool_choice=tool_choice)
return response
def handle_feedback(user_response):
st.toast("βοΈ Feedback received!")
st.session_state.feedback = False
def handle_image_upload():
st.session_state.release_file = "true"
# Warm start
if st.session_state.init["warm_started"] == "No":
clear_chat_history()
st.session_state.init["warm_started"] = "Yes"
# Image upload option
with st.sidebar:
image_file = st.file_uploader("Upload your image here...",
type=["png", "jpeg", "jpg"],
on_change=handle_image_upload)
if st.session_state.release_file == "true" and image_file:
with st.spinner("Uploading..."):
b64string = base64.b64encode(image_file.read()).decode('utf-8')
message = {
"role": "user",
"content": b64string,
"type": "image"}
st.session_state.messages.append(message)
transcribed_msg = get_transcribed_text(b64string)
message = {
"role": "admin",
"content": transcribed_msg,
"type": "text"}
st.session_state.messages.append(message)
st.session_state.release_file = "false"
# Display or clear chat messages
for message in st.session_state.messages:
if message["role"] == "admin":
continue
elif message["role"] == "user":
avatar = piglet_img_path
elif message["role"] == "assistant":
avatar = bear_img_path
with st.chat_message(message["role"], avatar=avatar):
if message["type"] == "text":
st.write(message["content"])
elif message["type"] == "image":
img_io = BytesIO(base64.b64decode(message["content"].encode("utf-8")))
st.image(img_io)
# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
st.session_state.messages.append({"role": "user",
"content": prompt,
"type": "text"})
with st.chat_message("user", avatar=piglet_img_path):
st.write(prompt)
# Retrieve text prompt from image submission
if prompt is None and \
st.session_state.messages[-1]["role"] == "admin":
st.session_state.image_prompt = True
prompt = st.session_state.messages[-1]["content"]
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar=bear_img_path):
with st.spinner("π§Έπ€ Thinking... π»π"):
if st.session_state.image_prompt:
response = generate_llm_response(
prompt,
tool_choice="health_insurance_textbook_query_engine"
)
st.session_state.image_prompt = False
else:
response = generate_llm_response(prompt, tool_choice="auto")
placeholder = st.empty()
full_response = ""
for token in response.response_gen:
token = token.replace("\n", " \n") \
.replace("$", "\$") \
.replace("\[", "$$")
full_response += token
placeholder.markdown(full_response)
placeholder.markdown(full_response)
message = {"role": "assistant",
"content": full_response,
"type": "text"}
st.session_state.messages.append(message)
# Trigger feedback
if st.session_state.feedback:
result = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional] Please provide an explanation",
on_submit=handle_feedback,
key=f"feedback_{st.session_state.feedback_key}"
) |