File size: 8,777 Bytes
ac8a60b
8434471
ac8a60b
 
 
8434471
ac8a60b
8434471
 
69e20d0
 
 
 
 
 
 
 
 
 
 
 
 
ac8a60b
 
 
 
8434471
8c107a7
 
 
 
 
69e20d0
 
 
 
 
 
 
 
 
 
 
8434471
 
 
69e20d0
8434471
ac8a60b
8434471
69e20d0
 
 
8434471
69e20d0
8434471
69e20d0
 
 
 
ac8a60b
 
69e20d0
ac8a60b
 
8434471
be36d9d
 
 
 
 
 
 
 
 
b580d80
c81f36b
be36d9d
ac8a60b
 
 
 
 
 
 
 
 
 
c81f36b
ac8a60b
5ea4259
 
 
 
 
 
 
 
 
69e20d0
 
ac8a60b
 
 
 
5ea4259
 
 
 
 
 
 
8434471
5ea4259
c81f36b
5ea4259
8434471
ac8a60b
 
5ea4259
ac8a60b
8434471
69e20d0
c81f36b
 
 
 
 
 
 
 
 
 
 
5ea4259
 
 
 
354a5a9
 
5ea4259
 
c81f36b
 
 
 
be36d9d
 
5ea4259
be36d9d
c81f36b
 
 
 
 
 
8c107a7
 
 
5ea4259
8c107a7
 
 
5ea4259
8c107a7
 
5ea4259
 
 
8c107a7
 
 
 
 
 
 
 
 
5ea4259
c81f36b
 
 
 
 
 
8c107a7
c81f36b
5ea4259
c81f36b
 
 
 
 
8c107a7
 
 
5ea4259
8c107a7
5ea4259
c81f36b
 
 
8434471
8c107a7
8434471
ac8a60b
 
 
8434471
 
 
 
 
 
 
 
 
ac8a60b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import sqlite3
import streamlit as st
from pydantic import BaseModel, Field
from llama_index.core.tools import FunctionTool

import time

db_path = "./database/mock_qna.sqlite"
qna_question_description = """
    Only trigger this when user wants to be tested with a question.
    Use this tool to extract the chapter number from the body of input text, 
    thereafter, chapter number will be used as a filtering criteria for
    extracting the right questions set from database.
    
    Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.
    If no chapter number specified or user requested for random question,
    or user has no preference over which chapter of textbook to be tested,
    set function argument `chapter_n` to be `Chapter_0`.
"""
qna_question_data_format = """
    The format of the function argument `chapter_n` looks as follow:
    It should be in the format with `Chapter_` as prefix.
        Example 1: `Chapter_1` for first chapter
        Example 2: For chapter 12 of the textbook, you should return `Chapter_12`
        Example 3: `Chapter_5` for fifth chapter
"""
qna_answer_description = """
    Not to trigger this when questions being asked, come directly from user. 
    Only use this tool to trigger the evaluation of user's provided input with the 
    correct answer of the Q&A question asked by Assistant. When user provides 
    answer to the question asked, they can reply in natural language or giving 
    the alphabet letter of which selected choice they think it's the right answer.
    
    If user's answer is not a single alphabet letter, but is contextually 
    closer to a particular answer choice, return the corresponding
    alphabet A, B, C, D or Z for which the answer's meaning is closest to.

    Thereafter, the `user_selected_answer` argument will be passed to the 
    function for Q&A question evaluation.
"""
qna_answer_data_format = """
    The format of the function argument `user_selected_answer` looks as follow:
        It should be in the format of single character such as `A`, `B`, `C`, `D` or `Z`.
        Example 1: User's answer is `a`, it means choice `A`.
        Example 2: User's answer is contextually closer to 3rd answer choice, it means `C`.
        Example 3: User says last is the answer, it means `D`.
        Example 4: If user doesn't know about the answer, it means `Z`.
"""

class Question_Model(BaseModel):
    chapter_n: str = Field(..., 
                           pattern=r'^Chapter_\d*$',
                           description=qna_question_data_format
                    )

class Answer_Model(BaseModel):
    user_selected_answer: str = Field(...,
                                      pattern=r'^[ABCDZ]$',
                                      description=qna_answer_data_format
                            )

def get_qna_question(chapter_n: str) -> str:

    con = sqlite3.connect(db_path)
    cur = con.cursor()

    filter_clause = "WHERE a.question_id IS NULL" \
                    if chapter_n == "Chapter_0" \
                    else f"WHERE a.question_id IS NULL AND chapter='{chapter_n}'"
    sql_string = f"""SELECT q.id, question, option_1, option_2, option_3, option_4, q.correct_answer, q.reasoning
                     FROM qna_tbl q LEFT JOIN 
                          (SELECT * 
                           FROM answer_tbl 
                           WHERE user_id = '{st.session_state.user_id}') a
                                    ON q.id = a.question_id
                 """ + filter_clause
    # sql_string = sql_string + " ORDER BY RANDOM() LIMIT 1"

    res = cur.execute(sql_string)
    result = res.fetchone()

    id       = result[0]
    question = result[1]
    option_1 = result[2]
    option_2 = result[3]
    option_3 = result[4]
    option_4 = result[5]
    c_answer = result[6]
    reasons  = result[7]

    c_answer = int(c_answer)
    option_dict = {
        1: option_1,
        2: option_2,
        3: option_3,
        4: option_4
    }
    qna_answer_str = option_dict.get(c_answer, "NA")

    qna_str  = "As requested, here is the retrieved question: \n" + \
               "============================================= \n" + \
                question.replace("\\n", "\n") + "\n" + \
               "A) " + option_1 + "\n" + \
               "B) " + option_2 + "\n" + \
               "C) " + option_3 + "\n" + \
               "D) " + option_4 + "\n"
    system_prompt = (
        "#### System prompt to assistant #### \n"
        "Be reminded to ask user the question \n"
        "#################################### \n"
    )

    st.session_state.question_id = id
    st.session_state.qna_answer_int = c_answer
    st.session_state.reasons = reasons
    st.session_state.qna_answer_str = qna_answer_str
    
    con.close()
    
    return qna_str + system_prompt

def evaluate_qna_answer(user_selected_answer: str) -> str:

    try:
        answer_mapping = {
            "A": 1,
            "B": 2,
            "C": 3,
            "D": 4,
            "Z": 0
        }
        num_mapping = dict((v,k) for k,v in answer_mapping.items())
        user_answer_numeric = answer_mapping.get(user_selected_answer, 0)

        question_id       = st.session_state.question_id
        qna_answer_int    = st.session_state.qna_answer_int
        reasons           = st.session_state.reasons
        qna_answer_str    = st.session_state.qna_answer_str

        ### convert to numeric type
        qna_answer_int      = int(qna_answer_int)
        qna_answer_alphabet = num_mapping.get(qna_answer_int, "ERROR")

        con = sqlite3.connect(db_path)
        cur = con.cursor()
        sql_string = f"""INSERT INTO answer_tbl 
                         VALUES ('{st.session_state.user_id}', 
                                  {question_id}, 
                                  {qna_answer_int}, 
                                  {user_answer_numeric})
        """
        
        res = cur.execute(sql_string)
        con.commit()
        con.close()

        reasoning = "" if "textbook" in reasons else f"Rationale is that: {reasons}. "
        qna_answer_response = (
            f"Your selected answer is `{user_selected_answer}`, "
            f"but the actual answer is `{qna_answer_alphabet}`) {qna_answer_str}. "
        )
        qna_not_knowing_response = (
            f"No problem! The answer is `{qna_answer_alphabet}`. "
            f"Let me explain to you why the correct answer is '{qna_answer_str}'. "
        )
        to_know_more = (
            "######## System prompt to assistant ######### \n"
            "Be reminded to provide explanation to user    \n"
            "############################################# \n"
        )

        if user_answer_numeric == 0:
            st.toast("πŸ―β“ couldn't find the honey? πŸ‘Œ no worries!", icon="🫠")
            time.sleep(2)
            st.toast("🐻 Let me bring it to you! πŸ―πŸ’•", icon="πŸ’Œ")
            time.sleep(2)
            st.toast("✨ You will do great next time! πŸ’†", icon="🎁")
            final_response = qna_not_knowing_response + reasoning + to_know_more
        elif qna_answer_int == user_answer_numeric:
            st.toast("🍯 yummy yummy, hooray!", icon="πŸŽ‰")
            time.sleep(2)
            st.toast("πŸ»πŸ’•πŸ― You got it right!", icon="🎊")
            time.sleep(2)
            st.toast("πŸ₯‡ You are amazing! πŸ’―πŸ’―", icon="πŸ’ͺ")
            st.balloons()
            final_response = qna_answer_response + reasoning + to_know_more
        else:
            st.toast("🐼 Something doesn't feel right.. πŸ”₯🏠πŸ”₯", icon="πŸ˜‚")
            time.sleep(2)
            st.toast("πŸ₯Ά Are you sure..? 😬😬", icon="😭")
            time.sleep(2)
            st.toast("πŸ€œπŸ€› Nevertheless, it was a good try!! πŸ‹οΈβ€β™‚οΈπŸ‹οΈβ€β™‚οΈ", icon="πŸ‘")
            st.snow()
            final_response = qna_answer_response + reasoning + to_know_more

        st.session_state.question_id = None
        st.session_state.qna_answer_int = None
        st.session_state.reasons = None
        st.session_state.qna_answer_str = None

    except Exception as e:
        print(e)

    return final_response

get_qna_question_tool = FunctionTool.from_defaults(
                            fn=get_qna_question,
                            name="Extract_Question",
                            description=qna_question_description,
                            fn_schema=Question_Model
)

evaluate_qna_answer_tool = FunctionTool.from_defaults(
                            fn=evaluate_qna_answer,
                            name="Evaluate_Answer",
                            description=qna_answer_description,
                            fn_schema=Answer_Model
)