ragtest-sakimilo / streamlit_app.py
lingyit1108's picture
added more questions
9b5e886
raw
history blame
16.9 kB
import streamlit as st
from streamlit_feedback import streamlit_feedback
import os
import pandas as pd
import base64
from io import BytesIO
import sqlite3
import chromadb
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
Document
)
from llama_index.vector_stores.chroma.base import ChromaVectorStore
from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.tools import QueryEngineTool
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import Settings
from vision_api import get_transcribed_text
from qna_prompting import get_qna_question_tool, evaluate_qna_answer_tool
import nest_asyncio
nest_asyncio.apply()
# App title
st.set_page_config(page_title="πŸ»πŸ“š Study Bear 🍯")
openai_api = os.getenv("OPENAI_API_KEY")
# "./raw_documents/HI_Knowledge_Base.pdf"
image_prompt = False
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
"./raw_documents/qna.txt"]
embedding_model = "BAAI/bge-small-en-v1.5"
persisted_vector_db = "./models/chroma_db"
fine_tuned_path = "local:models/fine-tuned-embeddings"
questionaire_db_path = "./database/mock_qna.sqlite"
system_content = (
"You are a helpful study assistant. "
"You do not respond as 'User' or pretend to be 'User'. "
"You only respond once as 'Assistant'."
)
textbook_content = (
"The content of the textbook `Health Insurance 7th Edition` are as follows,"
"- Chapter 1: Overview Of Healthcare Environment In Singapore"
"- Chapter 2: Medical Expense Insurance"
"- Chapter 3: Group Medical Expense Insurance"
"- Chapter 4: Disability Income Insurance"
"- Chapter 5: Long-Term Care Insurance"
"- Chapter 6: Critical Illness Insurance"
"- Chapter 7: Other Types Of Health Insurance"
"- Chapter 8: Managed Healthcare"
"- Chapter 9: Part I Healthcare Financing"
"- Chapter 9: Part II Healthcare Financing"
"- Chapter 10: Common Policy Provisions"
"- Chapter 11: Health Insurance Pricing"
"- Chapter 12: Health Insurance Underwriting"
"- Chapter 13: Notice No: MAS 120 Disclosure And Advisory Process - Requirements For Accident And Health Insurance Products"
"- Chapter 14: Financial Needs Analysis"
"- Chapter 15: Case Studies"
)
data_df = pd.DataFrame(
{
"Completion": [30, 40, 100, 10],
}
)
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]
bear_img_path = "./resource/disney-cuties-little-winnie-the-pooh-emoticon.png"
piglet_img_path = "./resource/disney-cuties-piglet-emoticon.png"
introduction_line = (
"Hello, my name is Winnie. I am your `Study Bear` 🐻. \n"
"Let's study together and pass the exam without worries. \n"
"As the saying goes: \n"
"> Any day spent with you is my favorite day. So, today is my new favorite day. \n"
"> \n"
"Let me know what should we study today πŸ˜‰. \n"
" \n"
"The content of the textbook `Health Insurance 7th Edition` are as follows, \n"
"- Chapter 1: Overview Of Healthcare Environment In Singapore \n"
"- Chapter 2: Medical Expense Insurance \n"
"- Chapter 3: Group Medical Expense Insurance \n"
"- Chapter 4: Disability Income Insurance \n"
"- Etc ... \n"
" \n"
"For examples, you could ask me \n"
"- *How many modules I have to take to become an insurance agent in Singapore?* \n"
"- *How many chapters are there in textbook 'Health Insurance 7th Edition'?* \n"
"- *Can you list all the chapters by name and its number for me?* \n"
"- *Please extract the important key concept from chapter 1 - overview of healthcare environment in singapore, into 10 bullet points* \n"
"- *Please ask me a question so that I can tell if I have enough understanding about Chapter 2* \n"
)
# Replicate Credentials
with st.sidebar:
st.title("🍯🐝 Study Bear πŸ»πŸ’­")
st.write("Just like Pooh needs honey, success requires hard work – no shortcuts allowed!")
if openai_api:
pass
elif "OPENAI_API_KEY" in st.secrets:
st.success("API key already provided!", icon="βœ…")
openai_api = st.secrets["OPENAI_API_KEY"]
else:
openai_api = st.text_input("Enter OpenAI API token:", type="password")
if not (openai_api.startswith("sk-") and len(openai_api)==51):
st.warning("Please enter your credentials!", icon="⚠️")
else:
st.success("Proceed to entering your prompt message!", icon="πŸ‘‰")
### for streamlit purpose
os.environ["OPENAI_API_KEY"] = openai_api
st.subheader("Models and parameters")
selected_model = st.sidebar.selectbox("Choose an OpenAI model",
["gpt-4-0125-preview", "gpt-3.5-turbo-0125"],
key="selected_model")
temperature = st.sidebar.slider("temperature", min_value=0.0, max_value=2.0,
value=0.0, step=0.01)
st.data_editor(
data_df,
column_config={
"Completion": st.column_config.ProgressColumn(
"Completion %",
help="Percentage of content covered",
format="%.1f%%",
min_value=0,
max_value=100,
),
},
hide_index=False,
)
st.markdown("πŸ“– Reach out to SakiMilo to learn how to create this app!")
if "init" not in st.session_state.keys():
st.session_state.init = {"warm_started": "No"}
st.session_state.feedback = False
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant",
"content": introduction_line,
"type": "text"}]
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
if "release_file" not in st.session_state:
st.session_state.release_file = "false"
if "question_id" not in st.session_state:
st.session_state.question_id = None
if "qna_answer" not in st.session_state:
st.session_state.qna_answer = None
def clear_chat_history():
st.session_state.messages = [{"role": "assistant",
"content": introduction_line,
"type": "text"}]
chat_engine = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
fine_tuned_path=fine_tuned_path,
system_content=system_content,
persisted_vector_db=persisted_vector_db)
chat_engine.reset()
st.toast("yumyum, what was I saying again? πŸ»πŸ’¬", icon="🍯")
def clear_question_history():
con = sqlite3.connect(questionaire_db_path)
cur = con.cursor()
sql_string = "DELETE FROM answer_tbl"
res = cur.execute(sql_string)
con.commit()
con.close()
st.toast("the tale of one thousand and one questions, reset! 🧨🧨", icon="πŸ“")
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
st.sidebar.button("Clear Question History", on_click=clear_question_history)
if st.sidebar.button("I want to submit a feedback!"):
st.session_state.feedback = True
st.session_state.feedback_key += 1 # overwrite feedback component
@st.cache_resource
def get_document_object(input_files):
documents = SimpleDirectoryReader(input_files=input_files).load_data()
document = Document(text="\n\n".join([doc.text for doc in documents]))
return document
@st.cache_resource
def get_llm_object(selected_model, temperature):
llm = OpenAI(model=selected_model, temperature=temperature)
return llm
@st.cache_resource
def get_embedding_model(model_name, fine_tuned_path=None):
if fine_tuned_path is None:
print(f"loading from `{model_name}` from huggingface")
embed_model = HuggingFaceEmbedding(model_name=model_name)
else:
print(f"loading from local `{fine_tuned_path}`")
embed_model = fine_tuned_path
return embed_model
@st.cache_resource
def get_query_engine(input_files, llm_model, temperature,
embedding_model, fine_tuned_path,
system_content, persisted_vector_db):
llm = get_llm_object(llm_model, temperature)
embedded_model = get_embedding_model(
model_name=embedding_model,
fine_tuned_path=fine_tuned_path
)
Settings.llm = llm
Settings.chunk_size = 1024
Settings.embed_model = embedded_model
if os.path.exists(persisted_vector_db):
print("loading from vector database - chroma")
db = chromadb.PersistentClient(path=persisted_vector_db)
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
storage_context=storage_context
)
else:
print("create new chroma vector database..")
documents = SimpleDirectoryReader(input_files=input_files).load_data()
db = chromadb.PersistentClient(path=persisted_vector_db)
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(nodes, storage_context=storage_context)
memory = ChatMemoryBuffer.from_defaults(token_limit=100_000)
hi_content_engine = index.as_query_engine(
memory=memory,
system_prompt=system_content,
similarity_top_k=10,
verbose=True,
streaming=True
)
hi_textbook_query_description = """
Use this tool to extract content from the query engine,
which is built by ingesting textbook content from `Health Insurance 7th Edition`,
that has 15 chapters in total. When user wants to learn more about a
particular chapter, this tool will help to assist user to get better
understanding of the content of the textbook.
"""
hi_query_tool = QueryEngineTool.from_defaults(
query_engine=hi_content_engine,
name="health_insurance_textbook_query_engine",
description=hi_textbook_query_description
)
agent = OpenAIAgent.from_tools(tools=[
hi_query_tool,
get_qna_question_tool,
evaluate_qna_answer_tool
],
max_function_calls=1,
llm=llm,
verbose=True,
system_prompt=textbook_content)
print("loaded AI agent, let's begin the chat!")
print("="*50)
print("")
return agent
def generate_llm_response(prompt_input, tool_choice="auto"):
chat_agent = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
fine_tuned_path=fine_tuned_path,
system_content=system_content,
persisted_vector_db=persisted_vector_db)
# st.session_state.messages
response = chat_agent.stream_chat(prompt_input, tool_choice=tool_choice)
return response
def handle_feedback(user_response):
st.toast("βœ”οΈ Feedback received!")
st.session_state.feedback = False
def handle_image_upload():
st.session_state.release_file = "true"
# Warm start
if st.session_state.init["warm_started"] == "No":
clear_chat_history()
st.session_state.init["warm_started"] = "Yes"
# Image upload option
with st.sidebar:
image_file = st.file_uploader("Upload your image here...",
type=["png", "jpeg", "jpg"],
on_change=handle_image_upload)
if st.session_state.release_file == "true" and image_file:
with st.spinner("Uploading..."):
b64string = base64.b64encode(image_file.read()).decode('utf-8')
message = {
"role": "user",
"content": b64string,
"type": "image"}
st.session_state.messages.append(message)
transcribed_msg = get_transcribed_text(b64string)
message = {
"role": "admin",
"content": transcribed_msg,
"type": "text"}
st.session_state.messages.append(message)
st.session_state.release_file = "false"
# Display or clear chat messages
for message in st.session_state.messages:
if message["role"] == "admin":
continue
elif message["role"] == "user":
avatar = piglet_img_path
elif message["role"] == "assistant":
avatar = bear_img_path
with st.chat_message(message["role"], avatar=avatar):
if message["type"] == "text":
st.write(message["content"])
elif message["type"] == "image":
img_io = BytesIO(base64.b64decode(message["content"].encode("utf-8")))
st.image(img_io)
# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
st.session_state.messages.append({"role": "user",
"content": prompt,
"type": "text"})
with st.chat_message("user", avatar=piglet_img_path):
st.write(prompt)
# Retrieve text prompt from image submission
if prompt is None and \
st.session_state.messages[-1]["role"] == "admin":
image_prompt = True
prompt = st.session_state.messages[-1]["content"]
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar=bear_img_path):
with st.spinner("πŸ§ΈπŸ’€ Thinking... πŸ»πŸ’­"):
if image_prompt:
response = generate_llm_response(
prompt,
tool_choice="health_insurance_textbook_query_engine"
)
image_prompt = False
else:
response = generate_llm_response(prompt, tool_choice="auto")
placeholder = st.empty()
full_response = ""
for token in response.response_gen:
token = token.replace("\n", " \n") \
.replace("$", "\$") \
.replace("\[", "$$")
full_response += token
placeholder.markdown(full_response)
placeholder.markdown(full_response)
message = {"role": "assistant",
"content": full_response,
"type": "text"}
st.session_state.messages.append(message)
# Trigger feedback
if st.session_state.feedback:
result = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional] Please provide an explanation",
on_submit=handle_feedback,
key=f"feedback_{st.session_state.feedback_key}"
)