File size: 6,817 Bytes
a1f356b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import json

import networkx as nx
import streamlit as st
from st_link_analysis import st_link_analysis, NodeStyle, EdgeStyle
from st_link_analysis.component.layouts import LAYOUTS
from datasets import load_dataset

LAYOUT_NAMES = list(LAYOUTS.keys())

st.set_page_config(layout="wide")

# Sample Data

elements = {
    "nodes": [
        {"data": {"id": 1, "label": "Node", "name": "Streamlit"}},
        {"data": {"id": 2, "label": "PERSON", "name": "Hello"}},
        {"data": {"id": 3, "label": "Node", "name": "World"}},
        {"data": {"id": 4, "label": "POST", "content": "x"}},
        {"data": {"id": 5, "label": "POST", "content": "y"}},
    ],
    "edges": [
        {"data": {"id": 6, "label": "FOLLOWS", "source": 1, "target": 2}},
        {"data": {"id": 7, "label": "FOLLOWS", "source": 2, "target": 3}},
        {"data": {"id": 8, "label": "POSTED", "source": 3, "target": 4}},
        {"data": {"id": 9, "label": "POSTED", "source": 1, "target": 5}},
        {"data": {"id": 10, "label": "QUOTES", "source": 5, "target": 4}},
    ],
}

# Style node & edge groups
node_styles = [
    NodeStyle("Node", "#FF7F3E", "name"),
]

edge_styles = [
    EdgeStyle("RED", "#FFB6C1", directed=False),
    EdgeStyle("BLUE", "#87CEEB", directed=False),
]

# Render the component
@st.cache_data
def load_graphs(graphset_name: str):
    graphs = nx.read_graph6(f"data/{graphset_name}")
    return graphs
@st.cache_data
def load_graphs_from_dataset(graphset_name: str):
    dataset = load_dataset("linxy/RamseyGraph", graphset_name, trust_remote_code=True)
    return list(dataset["train"])

_FILENAMES = [
    "r34_8",
    "r35_12",
    "r44_3",
    "r37_22",
    "r35_9",
    "r44_7",
    "r39_35",
    "r45_24",
    "r44_6",
    "r44_11",
    "r35_13",
    "r44_2",
    "r44_13",
    "r35_8",
    "r44_9",
    "r34_2",
    "r35_3",
    "r36_4",
    "r44_14",
    "r34_6",
    "r37_21",
    "r35_7",
    "r44_15",
    "r34_7",
    "r36_1",
    "r35_6",
    "r44_12",
    "r36_17",
    "r44_10",
    "r44_8",
    "r34_3",
    "r35_2",
    "r36_5",
    "r44_16",
    "r34_4",
    "r36_16",
    "r36_2",
    "r35_5",
    "r36_14",
    "r35_1",
    "r36_6",
    "r36_10",
    "r34_1",
    "r36_7",
    "r44_17",
    "r36_12",
    "r34_5",
    "r38_27",
    "r36_3",
    "r35_4",
    "r36_15",
    "r44_5",
    "r36_8",
    "r55_42some",
    "r35_10",
    "r44_1",
    "r35_11",
    "r36_13",
    "r46_35some",
    "r44_4",
    "r36_11",
    "r36_9",
]

def convert_graph_to_json(G, show_blue):
    # 创建元素列表,存储节点和边的数据
    elements = {"nodes": [], "edges": []}

    # 遍历图的所有节点并将其添加到elements["nodes"]
    for node in G.nodes(data=True):
        # 假设你想为节点提供一个简单的 "label" 和 "name"
        # 可以根据需求自定义数据结构
        elements["nodes"].append(
            {
                "data": {
                    "id": str(node[0]),
                    "label": node[1].get("label", f"Node"),  # 可根据实际属性设置
                    "name": node[1].get("name", f"Node{node[0]}"),
                }
            }
        )

    # 遍历图的所有边并将其添加到elements["edges"]
    edge_set = set()
    for i, edge in enumerate(G.edges(data=True)):
        elements["edges"].append(
            {
                "data": {
                    "id": str(i + len(G.nodes)),  # 确保edge的id与node的id不冲突
                    "label": edge[2].get("label", f"RED"),
                    "source": str(edge[0]),
                    "target": str(edge[1]),
                }
            }
        )
        edge_set.add((str(edge[0]), str(edge[1])))

    if show_blue:
        for i in range(len(G.nodes)):
            for j in range(i+1, len(G.nodes)):
                if (str(i), str(j)) in edge_set:
                    continue
                elements["edges"].append(
                    {
                        "data": {
                            "id": str(len(G.nodes) + len(G.edges) + i*(len(G.nodes)) + j),  # 确保edge的id与node的id不冲突
                            "label": "BLUE",
                            "source": str(i),
                            "target": str(j),
                        }
                    }
                )


    return elements


def convert_data_to_elements(G, show_blue):
    elements = {"nodes": [], "edges": []}

    for node in range(G['num_nodes']):
        elements["nodes"].append(
            {
                "data": {
                    "id": str(node),
                    "label": "Node",
                    "name": f"Node {node}",
                }
            }
        )

    edge_set = set()
    for i, (source, target) in enumerate(G["edges"]):
        elements["edges"].append(
            {
                "data": {
                    "id": str(G['num_nodes'] + i),
                    "label": "RED",
                    "source": str(source),
                    "target": str(target),
                }
            }
        )
        edge_set.add((str(source), str(target)))

    if show_blue:
        for i in range(G['num_nodes']):
            for j in range(i+1, G['num_nodes']):
                if (str(i), str(j)) in edge_set:
                    continue
                elements["edges"].append(
                    {
                        "data": {
                            "id": str(G['num_nodes'] + len(G["edges"]) + i*(G['num_nodes']) + j),  # 确保edge的id与node的id不冲突
                            "label": "BLUE",
                            "source": str(i),
                            "target": str(j),
                        }
                    }
                )
    return elements

with st.sidebar:
    st.title("Ramsey Graph")
    # graphset_name = st.selectbox("R(s,t)_n", os.listdir("data"), index=0)
    # dataset = load_dataset("linxy/RamseyGraph", graphset_name, trust_remote_code=True)
    # graphs = load_graphs(graphset_name)
    graphset_name = st.selectbox("R(s,t)_n", _FILENAMES, index=0)
    graphs = load_graphs_from_dataset(graphset_name)
    G = st.radio("G", graphs, index=0, format_func=lambda x: f"Graph with {x['num_nodes']} nodes and {len(x['edges'])} edges")

    st.markdown("## Visualization Settings")
    layout = st.selectbox("Layout Name", LAYOUT_NAMES, index=4)
    show_blue = st.checkbox("Show Blue Edges", True)

    st.markdown("## Graph Data")
    elements = convert_data_to_elements(G, show_blue)
    st.json(elements)
    # print(json.dumps(elements, ensure_ascii=False, indent=2))

st.markdown("# Ramsey Graph")
s, t = graphset_name[1], graphset_name[2]
st.markdown(f"the graph does not contain a clique of size {s} (RED) or an independent set of size {t} (BLUE)")
st_link_analysis(elements, layout, node_styles, edge_styles)