File size: 17,894 Bytes
bb48ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# encoding=utf-8
import multiprocessing as mp
import warnings

import requests
import tiktoken
from tqdm import tqdm
from dataclasses import dataclass, field
from typing import (
    AbstractSet,
    Any,
    Callable,
    Collection,
    Dict,
    Generator,
    List,
    Literal,
    Mapping,
    Optional,
    Set,
    Tuple,
    Union,
)
from pydantic import Extra, Field, root_validator
from loguru import logger

from langchain.llms.base import BaseLLM
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env

from langchain.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
import sys
import json


@dataclass(frozen=True)
class ChatGPTConfig:
    r"""Defines the parameters for generating chat completions using the
    OpenAI API.

    Args:
        temperature (float, optional): Sampling temperature to use, between
            :obj:`0` and :obj:`2`. Higher values make the output more random,
            while lower values make it more focused and deterministic.
            (default: :obj:`0.2`)
        top_p (float, optional): An alternative to sampling with temperature,
            called nucleus sampling, where the model considers the results of
            the tokens with top_p probability mass. So :obj:`0.1` means only
            the tokens comprising the top 10% probability mass are considered.
            (default: :obj:`1.0`)
        n (int, optional): How many chat completion choices to generate for
            each input message. ()default: :obj:`1`)
        stream (bool, optional): If True, partial message deltas will be sent
            as data-only server-sent events as they become available.
            (default: :obj:`False`)
        stop (str or list, optional): Up to :obj:`4` sequences where the API
            will stop generating further tokens. (default: :obj:`None`)
        max_tokens (int, optional): The maximum number of tokens to generate
            in the chat completion. The total length of input tokens and
            generated tokens is limited by the model's context length.
            (default: :obj:`None`)
        presence_penalty (float, optional): Number between :obj:`-2.0` and
            :obj:`2.0`. Positive values penalize new tokens based on whether
            they appear in the text so far, increasing the model's likelihood
            to talk about new topics. See more information about frequency and
            presence penalties. (default: :obj:`0.0`)
        frequency_penalty (float, optional): Number between :obj:`-2.0` and
            :obj:`2.0`. Positive values penalize new tokens based on their
            existing frequency in the text so far, decreasing the model's
            likelihood to repeat the same line verbatim. See more information
            about frequency and presence penalties. (default: :obj:`0.0`)
        logit_bias (dict, optional): Modify the likelihood of specified tokens
            appearing in the completion. Accepts a json object that maps tokens
            (specified by their token ID in the tokenizer) to an associated
            bias value from :obj:`-100` to :obj:`100`. Mathematically, the bias
            is added to the logits generated by the model prior to sampling.
            The exact effect will vary per model, but values between:obj:` -1`
            and :obj:`1` should decrease or increase likelihood of selection;
            values like :obj:`-100` or :obj:`100` should result in a ban or
            exclusive selection of the relevant token. (default: :obj:`{}`)
        user (str, optional): A unique identifier representing your end-user,
            which can help OpenAI to monitor and detect abuse.
            (default: :obj:`""`)
    """
    temperature: float = 1.0  # openai default: 1.0
    top_p: float = 1.0
    max_in_tokens: int = 3200
    timeout: int = 20


def get_userid_and_token(
    url='http://avatar.aicubes.cn/vtuber/auth/api/oauth/v1/login',
    app_id='6027294018fd496693d0b8c77e2d20a1',
    app_secret='52806a6fff8a452497061b9dcc5779f4'
):
    d = {'app_id': app_id, 'app_secret': app_secret}
    h = {'Content-Type': 'application/json'}
    r = requests.post(url, json=d, headers=h)
    data = r.json()['data']
    return data['user_id'], data['token']


class ChatAPI:
    def __init__(self, timeout=20, verbose=False) -> None:
        self.timeout = timeout
        self.verbose = verbose
        self.user_id, self.token = get_userid_and_token()

    def create_chat_completion(self, messages: List[Dict[str, str]], model: str, temperature: float, max_tokens=None) -> str:
        res = self.create_chat_completion_response_data(messages, model, temperature, max_tokens)
        return res['choices'][0]['message']['content']

    def create_chat_completion_response_data(self, messages: List[Dict[str, str]], model: str, temperature: float, max_tokens=None):
        res = self.create_chat_completion_response(messages, model, temperature, max_tokens)
        res = res.json()['data']
        return res

    def create_chat_completion_response(self, messages: List[Dict[str, str]], model: str, temperature: float, max_tokens=None):
        chat_url = 'http://avatar.aicubes.cn/vtuber/ai_access/chatgpt/v1/chat/completions'
        chat_header = {
            'Content-Type': 'application/json',
            'userId': self.user_id,
            'token': self.token
        }
        payload = {
            'model': model,
            'messages': messages,
            'temperature': temperature,
            'max_tokens': max_tokens,
        }
        timeout = self.timeout
        res = requests.post(chat_url, json=payload, headers=chat_header, timeout=timeout)
        if self.verbose:
            data = res.json()["data"]
            if data is None:
                logger.debug(res.json())
            else:
                logger.debug(data["choices"][0]["message"]["content"])
        return res


class OpenAIChat(BaseLLM):
    """Wrapper around OpenAI Chat large language models.

    To use, you should have the ``openai`` python package installed, and the
    environment variable ``OPENAI_API_KEY`` set with your API key.

    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.

    Example:
        .. code-block:: python

            from langchain.llms import OpenAIChat
            openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
    """

    model_name: str = "gpt-3.5-turbo"
    """Model name to use."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""
    max_retries: int = 6
    """Maximum number of retries to make when generating."""
    prefix_messages: List = Field(default_factory=list)
    """Series of messages for Chat input."""
    streaming: bool = False
    """Whether to stream the results or not."""
    allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
    """Set of special tokens that are allowed。"""
    disallowed_special: Union[Literal["all"], Collection[str]] = "all"
    """Set of special tokens that are not allowed。"""
    api = ChatAPI(timeout=60)
    generate_verbose: bool = False

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.ignore

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = {field.alias for field in cls.__fields__.values()}

        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name not in all_required_field_names:
                if field_name in extra:
                    raise ValueError(f"Found {field_name} supplied twice.")
                extra[field_name] = values.pop(field_name)
        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        return self.model_kwargs

    def _get_chat_params(
        self, prompts: List[str], stop: Optional[List[str]] = None
    ) -> Tuple:
        if len(prompts) > 1:
            raise ValueError(
                f"OpenAIChat currently only supports single prompt, got {prompts}"
            )
        messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
        params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
        if stop is not None:
            if "stop" in params:
                raise ValueError("`stop` found in both the input and default params.")
            params["stop"] = stop
        if params.get("max_tokens") == -1:
            # for ChatGPT api, omitting max_tokens is equivalent to having no limit
            del params["max_tokens"]
        return messages, params

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
    ) -> LLMResult:
        messages, params = self._get_chat_params(prompts, stop)
        if self.generate_verbose:
            logger.debug(json.dumps(params, indent=2))
            for msg in messages:
                logger.debug(msg["role"] + " : " + msg["content"])
        resp = self.api.create_chat_completion_response_data(messages, self.model_name, self.model_kwargs['temperature'])
        full_response = resp
        llm_output = {
            "token_usage": full_response["usage"],
            "model_name": self.model_name,
        }
        return LLMResult(
            generations=[
                [Generation(text=full_response["choices"][0]["message"]["content"])]
            ],
            llm_output=llm_output,
        )

    async def _agenerate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
    ) -> LLMResult:
        # messages, params = self._get_chat_params(prompts, stop)
        # full_response = await acompletion_with_retry(
        #     self, messages=messages, **params
        # )
        # llm_output = {
        #     "token_usage": full_response["usage"],
        #     "model_name": self.model_name,
        # }
        # return LLMResult(
        #     generations=[
        #         [Generation(text=full_response["choices"][0]["message"]["content"])]
        #     ],
        #     llm_output=llm_output,
        # )
        raise NotImplementedError("Async not supported for OpenAIChat")

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {**{"model_name": self.model_name}, **self._default_params}

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "openai-chat"

    def get_num_tokens(self, text: str) -> int:
        """Calculate num tokens with tiktoken package."""
        # tiktoken NOT supported for Python < 3.8
        if sys.version_info[1] < 8:
            return super().get_num_tokens(text)
        try:
            import tiktoken
        except ImportError:
            raise ValueError(
                "Could not import tiktoken python package. "
                "This is needed in order to calculate get_num_tokens. "
                "Please install it with `pip install tiktoken`."
            )
        # create a GPT-3.5-Turbo encoder instance
        enc = tiktoken.encoding_for_model("gpt-3.5-turbo")

        # encode the text using the GPT-3.5-Turbo encoder
        tokenized_text = enc.encode(
            text,
            allowed_special=self.allowed_special,
            disallowed_special=self.disallowed_special,
        )

        # calculate the number of tokens in the encoded text
        return len(tokenized_text)

class ChatSession:
    def __init__(self, prompt: str = '', chatgpt_config: ChatGPTConfig = ChatGPTConfig()) -> None:
        self.chatgpt_config = chatgpt_config.__dict__
        self.user_id, self.token = self.get_userid_and_token()
        encoding = tiktoken.encoding_for_model("gpt-3.5-turbo-0301")
        self.count = lambda x: len(encoding.encode(x))
        self.history = []
        self.system = [self.make_msg("system", prompt)] if prompt else []

    def restart(self, prompt: str = '') -> None:
        self.system = [self.make_msg("system", prompt)] if prompt else []

    @staticmethod
    def make_msg(role: str, msg: str) -> Dict:
        assert role in {"system", "assistant", "user"}
        return {"role": role, "content": msg}

    @staticmethod
    def get_userid_and_token(
            url='http://avatar.aicubes.cn/vtuber/auth/api/oauth/v1/login',
            app_id='6027294018fd496693d0b8c77e2d20a1',
            app_secret='52806a6fff8a452497061b9dcc5779f4'
    ):
        d = {'app_id': app_id, 'app_secret': app_secret}
        h = {'Content-Type': 'application/json'}
        r = requests.post(url, json=d, headers=h)
        data = r.json()['data']
        return data['user_id'], data['token']

    def make_chat_session(self, user_id: str, token: str, input_message: List[Dict[str, str]]):
        chat_h = {
            'Content-Type': 'application/json',
            'userId': user_id,
            'token': token
        }
        chat_url = 'http://avatar.aicubes.cn/vtuber/ai_access/chatgpt/v1/chat/completions'
        res = requests.post(chat_url, json={
            'messages': input_message, **self.chatgpt_config
        }, headers=chat_h, timeout=self.chatgpt_config['timeout'])
        return res.json()['data']['choices'][0]['message']['content']

    def create_chat_completion(self, messages: List[Dict[str, str]], model: str, temperature: float, max_tokens=None) -> str:
        chat_url = 'http://avatar.aicubes.cn/vtuber/ai_access/chatgpt/v1/chat/completions'
        chat_header = {
            'Content-Type': 'application/json',
            'userId': self.user_id,
            'token': self.token
        }
        payload = {
            'model': model,
            'messages': messages,
            'temperature': temperature,
            'max_tokens': max_tokens,
        }
        timeout = self.chatgpt_config['timeout']
        res = requests.post(chat_url, json=payload, headers=chat_header, timeout=timeout)
        return res.json()['data']['choices'][0]['message']['content']

    def chat(self, msg: str):
        self.history.append(self.make_msg("user", msg))
        init_tokenCnt = self.count(self.system[0]['content']) if self.system else 0
        inputStaMsgIdx, tokenCnt = len(self.history), init_tokenCnt
        while inputStaMsgIdx and (
                tokenCnt := tokenCnt + self.count(self.history[inputStaMsgIdx - 1]['content'])) < \
                self.chatgpt_config['max_in_tokens']:
            inputStaMsgIdx -= 1
        inputStaMsgIdx = inputStaMsgIdx if inputStaMsgIdx < len(self.history) else -1
        res = self.make_chat_session(self.user_id, self.token, self.system + self.history[inputStaMsgIdx:])
        self.history.append(self.make_msg("assistant", res))
        return res


def batch_chat(info_lst: List, request_num: int = 6) -> List:
    res = []
    pool = mp.Pool(processes=request_num)
    for id, res_text in tqdm(pool.imap(single_chat, info_lst), desc="Asking API", total=len(info_lst)):
        if res_text:
            res.append((id, res_text))

    return res


def single_chat(info: Dict) -> (int, str):
    sess = ChatSession(info['sys'], info['config'])
    try:
        res = sess.chat(info['query'])
        return info['id'], res
    except Exception as e:
        print(e)
        return info['id'], ""


if __name__ == '__main__':

    sys_prompt = """
你是一位严格的评分员,我会给你一个指令和这个指令的回复,你需要仔细检查回复并给出分数,你可以从多个角度评判这个回复,比如:
回复是否准确、是否详尽、是否无害、是否完全符合指令里的要求,等等。分数分为5个等级,1分:完全不可用,2分:不可用但完成了部分指令,
3分:可用但有明显缺陷,4分:可用但有少许缺陷,5分:可用且没有缺陷。你在工作时需要加入自己的思考,并在最后给出分数。
下面是一个例子:
User: \n\n<指令>马云的妻子是谁?</指令>\n\n<回复>马云的妻子是张英琪。</回复>
Assistant: 这个回复错误,马云是阿里巴巴创始人,他的妻子是张瑛,因此回复错误,因此,我的分数是[1分]。
"""

    aaa = """
fq(xm, m) = (Wqxm)e^(imθ)
fk(xn, n) = (Wkxn)e^(inθ)
g(xm, xn, m − n) = Re[(Wqxm)(Wkxn)∗e^(i(m−n)θ)]
"""
    prompt = 'User: \n\n<指令>姚明多高</指令>\n\n<回复>18m</回复>\nAssistant:'
    bbb = "The given equation defines a function g(xm, xn, m-n) in terms of two complex functions fq(xm, m) and fk(xn, n) and their corresponding Fourier coefficients Wq and Wk, respectively. The function g(xm, xn, m-n) takes the real part of the product of the two complex exponential terms with phase angles m-theta and n-theta, respectively, where theta is an arbitrary constant angle. The term (m-n)theta in the exponent indicates that the two exponential terms are shifted by a phase difference of (m-n)theta."
    session = ChatSession('解释公式的含义')
    # print(session.chat(aaa))
    print(session.chat("你是谁?谁创造了你?你的知识截止于什么时候?你可以给自己取一个名字,请告诉我你的名字"))