File size: 3,800 Bytes
3552447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import open_clip
import numpy as np
import torch
import pandas as pd
import os

open_clip_model, _, preprocess = open_clip.create_model_and_transforms(
    'ViT-B-32', 
    pretrained='./open_clip_pytorch_model.bin')
debiased_model, _, _ = open_clip.create_model_and_transforms(
    'ViT-B-32', 
    pretrained='./debiased_openclip.pt')
open_clip_model.eval()
debiased_model.eval()
tokenizer = open_clip.get_tokenizer('ViT-B-32')

def get_clip_scores(images, candidates, w=1):
    images = images / np.sqrt(np.sum(images**2, axis=1, keepdims=True))
    candidates = candidates / np.sqrt(np.sum(candidates**2, axis=1, keepdims=True))
    per = w*np.clip(np.sum(images * candidates, axis=1), 0, None)
    return per

def predict(text1, text2, input_img):
    with torch.no_grad():
        image = preprocess(input_img)
        image= image.unsqueeze(0)
        image_features = open_clip_model.encode_image(image)
        debiased_image_features = debiased_model.encode_image(image)
        texts = tokenizer([text1])
        texts2 = tokenizer([text2])
        text_features = open_clip_model.encode_text(texts)
        debiased_text_features = debiased_model.encode_text(texts)
        # print(image_features.size(), text_features.size())
        # print(debiased_image_features.size(), debiased_text_features.size())
        score = get_clip_scores(image_features.numpy(), text_features.numpy())
        debiased_score = get_clip_scores(debiased_image_features.numpy(), debiased_text_features.numpy())
        text_features2 = open_clip_model.encode_text(texts2)
        debiased_text_features2 = debiased_model.encode_text(texts2)
        score2 = get_clip_scores(image_features.numpy(), text_features2.numpy())
        debiased_score2 = get_clip_scores(debiased_image_features.numpy(), debiased_text_features2.numpy())
        print(score, score2)
        data = {'label': ["OpenCLIP for text1", "Debiased CLIP for text1",
                          "OpenCLIP for text2", "Debiased CLIP for text2"
                          ],
                'score': [score[0], debiased_score[0], score2[0], debiased_score2[0]]
            } 
        print(pd.DataFrame.from_dict(data))
    return pd.DataFrame.from_dict(data)

# gradio_app = gr.Interface(
#     predict,
#     inputs=["text", "text",
#             gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"),
#             ],
#     outputs=gr.BarPlot(x="label",
#             y="score",
#             title="CLIP Score and Debiased Score",
#             vertical=False,
#             x_title=None
#             ),
#     title="Parrot Bias in CLIP!! (Both CLIP models are ViT-B-32)",
# )
with gr.Blocks() as demo:
    gr.Markdown("# Parrot Bias in CLIP!! (Both CLIP models are ViT-B-32)")
    with gr.Row():
        im = gr.Image(label="Select Image", 
                      sources=['upload', 'webcam'], 
                      type="pil",
                      height=450)
    with gr.Row():
        txt_1 = gr.Textbox(label="Input Text")
        txt_2 = gr.Textbox(label="Input Text 2")
        bar = gr.BarPlot(x="label", y="score",
            title="CLIP Score and Debiased Score",
            vertical=False, x_title=None)
    btn = gr.Button(value="Submit")
    btn.click(predict, inputs=[txt_1, txt_2, im], outputs=[bar])

    gr.Markdown("## Examples (from https://joaanna.github.io/disentangling_spelling_in_clip/)")
    gr.Examples(
        [["A mug cup", "An iPad",os.path.join(os.path.dirname(__file__), "examples/IMG_2938.jpg")], 
         ["A hat", "bad",os.path.join(os.path.dirname(__file__), "examples/IMG_3066.jpg")]],
        [txt_1, txt_2, im],
        fn=predict,
        outputs=bar,
        cache_examples=True,
    )

if __name__ == "__main__":
    demo.launch(show_api=False,share=True)