|
import gradio as gr |
|
from rdkit import Chem |
|
from rdkit.Chem import Draw |
|
import numpy as np |
|
import torch |
|
import pandas as pd |
|
import random |
|
import io |
|
import imageio |
|
import os |
|
import tempfile |
|
import atexit |
|
import glob |
|
import csv |
|
from datetime import datetime |
|
import json |
|
|
|
from evaluator import Evaluator |
|
from loader import load_graph_decoder |
|
|
|
|
|
known_labels = pd.read_csv('data/known_labels.csv') |
|
knwon_smiles = pd.read_csv('data/known_polymers.csv') |
|
|
|
all_properties = ['CH4', 'CO2', 'H2', 'N2', 'O2'] |
|
|
|
|
|
evaluators = {prop: Evaluator(f'evaluators/{prop}.joblib', prop) for prop in all_properties} |
|
|
|
|
|
property_ranges = {prop: (known_labels[prop].min(), known_labels[prop].max()) for prop in all_properties} |
|
|
|
|
|
temp_dir = tempfile.mkdtemp(prefix="polymer_gifs_") |
|
|
|
def cleanup_temp_files(): |
|
"""Clean up temporary GIF files on exit.""" |
|
for file in glob.glob(os.path.join(temp_dir, "*.gif")): |
|
try: |
|
os.remove(file) |
|
except Exception as e: |
|
print(f"Error deleting {file}: {e}") |
|
try: |
|
os.rmdir(temp_dir) |
|
except Exception as e: |
|
print(f"Error deleting temporary directory {temp_dir}: {e}") |
|
|
|
|
|
atexit.register(cleanup_temp_files) |
|
|
|
def random_properties(): |
|
return known_labels[all_properties].sample(1).values.tolist()[0] |
|
|
|
def load_model(model_choice): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = load_graph_decoder(device, path=model_choice) |
|
return (model, device) |
|
|
|
|
|
flagged_folder = "flagged" |
|
os.makedirs(flagged_folder, exist_ok=True) |
|
|
|
def save_interesting_log(smiles, properties, suggested_properties): |
|
"""Save interesting polymer data to a CSV file.""" |
|
log_file = os.path.join(flagged_folder, "log.csv") |
|
file_exists = os.path.isfile(log_file) |
|
|
|
with open(log_file, 'a', newline='') as csvfile: |
|
fieldnames = ['timestamp', 'smiles'] + all_properties + [f'suggested_{prop}' for prop in all_properties] |
|
writer = csv.DictWriter(csvfile, fieldnames=fieldnames) |
|
|
|
if not file_exists: |
|
writer.writeheader() |
|
|
|
log_data = { |
|
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
'smiles': smiles, |
|
**{prop: value for prop, value in zip(all_properties, properties)}, |
|
**{f'suggested_{prop}': value for prop, value in suggested_properties.items()} |
|
} |
|
writer.writerow(log_data) |
|
|
|
def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps): |
|
model, device = model_state |
|
|
|
properties = [CH4, CO2, H2, N2, O2] |
|
|
|
def is_nan_like(x): |
|
return x == 0 or x == '' or (isinstance(x, float) and np.isnan(x)) |
|
|
|
properties = [None if is_nan_like(prop) else prop for prop in properties] |
|
|
|
nan_message = "The following gas properties were treated as NaN: " |
|
nan_gases = [gas for gas, prop in zip(all_properties, properties) if prop is None] |
|
nan_message += ", ".join(nan_gases) if nan_gases else "None" |
|
|
|
num_nodes = None if num_nodes == 0 else num_nodes |
|
|
|
for _ in range(repeating_time): |
|
try: |
|
@spaces.GPU(duration=60) |
|
def generate_func(): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
print('Before generation, move model to', device) |
|
generated_molecule, img_list = model.generate(properties, device=device, guide_scale=guidance_scale, num_nodes=num_nodes, number_chain_steps=num_chain_steps) |
|
return generated_molecule, img_list |
|
|
|
generated_molecule, img_list = generate_func() |
|
|
|
|
|
gif_path = None |
|
if img_list and len(img_list) > 0: |
|
imgs = [np.array(pil_img) for pil_img in img_list] |
|
imgs.extend([imgs[-1]] * 10) |
|
gif_path = os.path.join(temp_dir, f"polymer_gen_{random.randint(0, 999999)}.gif") |
|
imageio.mimsave(gif_path, imgs, format='GIF', fps=fps, loop=0) |
|
|
|
if generated_molecule is not None: |
|
mol = Chem.MolFromSmiles(generated_molecule) |
|
if mol is not None: |
|
standardized_smiles = Chem.MolToSmiles(mol, isomericSmiles=True) |
|
is_novel = standardized_smiles not in knwon_smiles['smiles'].values |
|
novelty_status = "Novel (Not in Labeled Set)" if is_novel else "Not Novel (Exists in Labeled Set)" |
|
img = Draw.MolToImage(mol) |
|
|
|
|
|
suggested_properties = {} |
|
for prop, evaluator in evaluators.items(): |
|
suggested_properties[prop] = evaluator([standardized_smiles])[0] |
|
|
|
suggested_properties_text = "\n".join([f"**Suggested {prop}:** {value:.2f}" for prop, value in suggested_properties.items()]) |
|
|
|
return ( |
|
f"**Generated polymer SMILES:** `{standardized_smiles}`\n\n" |
|
f"**{nan_message}**\n\n" |
|
f"**{novelty_status}**\n\n" |
|
f"**Suggested Properties:**\n{suggested_properties_text}", |
|
img, |
|
gif_path, |
|
properties, |
|
suggested_properties |
|
) |
|
else: |
|
return ( |
|
f"**Generation failed:** Could not generate a valid molecule.\n\n**{nan_message}**", |
|
None, |
|
gif_path, |
|
properties, |
|
None, |
|
) |
|
except Exception as e: |
|
print(f"Error in generation: {e}") |
|
continue |
|
|
|
return f"**Generation failed:** Could not generate a valid molecule after {repeating_time} attempts.\n\n**{nan_message}**", None, None |
|
|
|
def set_random_properties(): |
|
return random_properties() |
|
|
|
|
|
model_name_mapping = { |
|
"model_all": "Graph DiT (trained on labeled + unlabeled)", |
|
"model_labeled": "Graph DiT (trained on labeled)" |
|
} |
|
|
|
def numpy_to_python(obj): |
|
if isinstance(obj, np.integer): |
|
return int(obj) |
|
elif isinstance(obj, np.floating): |
|
return float(obj) |
|
elif isinstance(obj, np.ndarray): |
|
return obj.tolist() |
|
elif isinstance(obj, list): |
|
return [numpy_to_python(item) for item in obj] |
|
elif isinstance(obj, dict): |
|
return {k: numpy_to_python(v) for k, v in obj.items()} |
|
else: |
|
return obj |
|
|
|
def on_generate(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps): |
|
result = generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps) |
|
|
|
if result[0].startswith("**Generated polymer SMILES:**"): |
|
smiles = result[0].split("**Generated polymer SMILES:** `")[1].split("`")[0] |
|
properties = json.dumps(numpy_to_python(result[3])) |
|
suggested_properties = json.dumps(numpy_to_python(result[4])) |
|
|
|
return [*result[:3], smiles, properties, suggested_properties, gr.Button(interactive=True)] |
|
else: |
|
|
|
return [*result[:3], "", "[]", "[]", gr.Button(interactive=False)] |
|
|
|
def process_feedback(checkbox_value, smiles, properties, suggested_properties): |
|
if checkbox_value: |
|
|
|
if isinstance(properties, str): |
|
properties = json.loads(properties) |
|
if isinstance(suggested_properties, str): |
|
suggested_properties = json.loads(suggested_properties) |
|
|
|
save_interesting_log(smiles, properties, suggested_properties) |
|
return gr.Textbox(value="Thank you for your feedback! This polymer has been saved to our interesting polymers log.", visible=True) |
|
else: |
|
return gr.Textbox(value="Thank you for your feedback!", visible=True) |
|
|
|
|
|
def reset_feedback_button(): |
|
return gr.Button(interactive=False) |
|
|
|
|
|
with gr.Blocks(title="Polymer Design with GraphDiT") as iface: |
|
|
|
with gr.Row(elem_id="navbar"): |
|
gr.Markdown(""" |
|
<div style="text-align: center;"> |
|
<h1>ππ¬ Polymer Design with GraphDiT</h1> |
|
<div style="display: flex; gap: 20px; justify-content: center; align-items: center; margin-top: 10px;"> |
|
<a href="https://github.com/liugangcode/Graph-DiT" target="_blank" style="display: flex; align-items: center; gap: 5px; text-decoration: none; color: inherit;"> |
|
<img src="https://img.icons8.com/ios-glyphs/30/000000/github.png" alt="GitHub" /> |
|
<span>View Code</span> |
|
</a> |
|
<a href="https://arxiv.org/abs/2401.13858" target="_blank" style="text-decoration: none; color: inherit;"> |
|
π View Paper |
|
</a> |
|
</div> |
|
</div> |
|
""") |
|
|
|
|
|
gr.Markdown(""" |
|
## Introduction |
|
|
|
Input the desired gas barrier properties for CHβ, COβ, Hβ, Nβ, and Oβ to generate novel polymer structures. The results are visualized as molecular graphs and represented by SMILES strings if they are successfully generated. Note: Gas barrier values set to 0 will be treated as `NaN` (unconditionally). If the generation fails, please retry or increase the number of repetition attempts. |
|
""") |
|
|
|
|
|
model_choice = gr.Radio( |
|
choices=list(model_name_mapping.values()), |
|
label="Model Zoo", |
|
|
|
value="Graph DiT (trained on labeled)" |
|
) |
|
|
|
|
|
with gr.Accordion("π Model Description", open=False): |
|
gr.Markdown(""" |
|
### GraphDiT: Graph Diffusion Transformer |
|
|
|
GraphDiT is a graph diffusion model designed for targeted molecular generation. It employs a conditional diffusion process to iteratively refine molecular structures based on user-specified properties. |
|
|
|
We have collected a labeled polymer database for gas permeability from [Membrane Database](https://research.csiro.au/virtualscreening/membrane-database-polymer-gas-separation-membranes/). Additionally, we utilize unlabeled polymer structures from [PolyInfo](https://polymer.nims.go.jp/). |
|
|
|
The gas permeability ranges from 0 to over ten thousand, with only hundreds of labeled data points, making this task particularly challenging. |
|
|
|
We are actively working on improving the model. We welcome any feedback regarding model usage or suggestions for improvement. |
|
|
|
#### Currently, we have two variants of Graph DiT: |
|
- **Graph DiT (trained on labeled + unlabeled)**: This model uses both labeled and unlabeled data for training, potentially leading to more diverse/novel polymer generation. |
|
- **Graph DiT (trained on labeled)**: This model is trained exclusively on labeled data, which may result in higher validity but potentially less diverse/novel outputs. |
|
""") |
|
|
|
|
|
with gr.Accordion("π Citation", open=False): |
|
gr.Markdown(""" |
|
If you use this model or interface useful, please cite the following paper: |
|
```bibtex |
|
@article{graphdit2024, |
|
title={Graph Diffusion Transformers for Multi-Conditional Molecular Generation}, |
|
author={Liu, Gang and Xu, Jiaxin and Luo, Tengfei and Jiang, Meng}, |
|
journal={NeurIPS}, |
|
year={2024}, |
|
} |
|
``` |
|
""") |
|
|
|
model_state = gr.State(lambda: load_model("model_all")) |
|
|
|
with gr.Row(): |
|
CH4_input = gr.Slider(0, property_ranges['CH4'][1], value=2.5, label=f"CHβ (Barrier) [0-{property_ranges['CH4'][1]:.1f}]") |
|
CO2_input = gr.Slider(0, property_ranges['CO2'][1], value=15.4, label=f"COβ (Barrier) [0-{property_ranges['CO2'][1]:.1f}]") |
|
H2_input = gr.Slider(0, property_ranges['H2'][1], value=21.0, label=f"Hβ (Barrier) [0-{property_ranges['H2'][1]:.1f}]") |
|
N2_input = gr.Slider(0, property_ranges['N2'][1], value=1.5, label=f"Nβ (Barrier) [0-{property_ranges['N2'][1]:.1f}]") |
|
O2_input = gr.Slider(0, property_ranges['O2'][1], value=2.8, label=f"Oβ (Barrier) [0-{property_ranges['O2'][1]:.1f}]") |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider(1, 3, value=2, label="Guidance Scale from Properties") |
|
num_nodes = gr.Slider(0, 50, step=1, value=0, label="Number of Nodes (0 for Random, Larger Graphs Take More Time)") |
|
repeating_time = gr.Slider(1, 10, step=1, value=3, label="Repetition Until Success") |
|
num_chain_steps = gr.Slider(0, 499, step=1, value=50, label="Number of Diffusion Steps to Visualize (Larger Numbers Take More Time)") |
|
fps = gr.Slider(0.25, 10, step=0.25, value=5, label="Frames Per Second") |
|
|
|
with gr.Row(): |
|
random_btn = gr.Button("π Randomize Properties (from Labeled Data)") |
|
generate_btn = gr.Button("π Generate Polymer") |
|
|
|
with gr.Row(): |
|
result_text = gr.Textbox(label="π Generation Result") |
|
result_image = gr.Image(label="Final Molecule Visualization", type="pil") |
|
result_gif = gr.Image(label="Generation Process Visualization", type="filepath", format="gif") |
|
|
|
with gr.Row() as feedback_row: |
|
feedback_btn = gr.Button("π I think this polymer is interesting!", visible=True, interactive=False) |
|
feedback_result = gr.Textbox(label="Feedback Result", visible=False) |
|
|
|
|
|
def switch_model(choice): |
|
|
|
internal_name = next(key for key, value in model_name_mapping.items() if value == choice) |
|
return load_model(internal_name) |
|
|
|
model_choice.change(switch_model, inputs=[model_choice], outputs=[model_state]) |
|
|
|
|
|
hidden_smiles = gr.Textbox(visible=False) |
|
hidden_properties = gr.JSON(visible=False) |
|
hidden_suggested_properties = gr.JSON(visible=False) |
|
|
|
|
|
random_btn.click( |
|
set_random_properties, |
|
outputs=[CH4_input, CO2_input, H2_input, N2_input, O2_input] |
|
) |
|
|
|
generate_btn.click( |
|
on_generate, |
|
inputs=[CH4_input, CO2_input, H2_input, N2_input, O2_input, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps], |
|
outputs=[result_text, result_image, result_gif, hidden_smiles, hidden_properties, hidden_suggested_properties, feedback_btn] |
|
) |
|
|
|
feedback_btn.click( |
|
process_feedback, |
|
inputs=[gr.Checkbox(value=True, visible=False), hidden_smiles, hidden_properties, hidden_suggested_properties], |
|
outputs=[feedback_result] |
|
).then( |
|
lambda: gr.Button(interactive=False), |
|
outputs=[feedback_btn] |
|
) |
|
|
|
CH4_input.change(reset_feedback_button, outputs=[feedback_btn]) |
|
CO2_input.change(reset_feedback_button, outputs=[feedback_btn]) |
|
H2_input.change(reset_feedback_button, outputs=[feedback_btn]) |
|
N2_input.change(reset_feedback_button, outputs=[feedback_btn]) |
|
O2_input.change(reset_feedback_button, outputs=[feedback_btn]) |
|
random_btn.click(reset_feedback_button, outputs=[feedback_btn]) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch(share=True) |