|
import math, os |
|
import pickle |
|
import os.path as op |
|
import numpy as np |
|
import pandas as pd |
|
from joblib import dump, load, Parallel, delayed |
|
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor |
|
from sklearn.metrics import mean_absolute_error, roc_auc_score |
|
from sklearn.base import BaseEstimator |
|
from tqdm import tqdm |
|
|
|
from rdkit import Chem |
|
from rdkit import rdBase |
|
from rdkit.Chem import AllChem |
|
from rdkit import DataStructs |
|
from rdkit.Chem import rdMolDescriptors |
|
rdBase.DisableLog('rdApp.error') |
|
|
|
def process_smiles(smiles): |
|
mol = Chem.MolFromSmiles(smiles) |
|
if mol is not None: |
|
return Evaluator.fingerprints_from_mol(mol), 1 |
|
return np.zeros((1, 2048)), 0 |
|
|
|
class Evaluator(): |
|
"""Scores based on an ECFP classifier.""" |
|
def __init__(self, model_path, task_name, n_jobs=2): |
|
self.n_jobs = n_jobs |
|
task_type = 'regression' |
|
self.task_name = task_name |
|
self.task_type = task_type |
|
self.model_path = model_path |
|
self.metric_func = roc_auc_score if 'classification' in self.task_type else mean_absolute_error |
|
self.model = load(model_path) |
|
|
|
def __call__(self, smiles_list): |
|
fps = [] |
|
mask = [] |
|
for i,smiles in enumerate(smiles_list): |
|
mol = Chem.MolFromSmiles(smiles) |
|
mask.append( int(mol is not None) ) |
|
fp = Evaluator.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048)) |
|
fps.append(fp) |
|
|
|
fps = np.concatenate(fps, axis=0) |
|
if 'classification' in self.task_type: |
|
scores = self.model.predict_proba(fps)[:, 1] |
|
else: |
|
scores = self.model.predict(fps) |
|
scores = scores * np.array(mask) |
|
return np.float32(scores) |
|
|
|
@classmethod |
|
def fingerprints_from_mol(cls, mol): |
|
features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048) |
|
features = np.zeros((1,)) |
|
DataStructs.ConvertToNumpyArray(features_vec, features) |
|
return features.reshape(1, -1) |
|
|
|
|
|
_fscores = None |
|
|
|
def readFragmentScores(name='fpscores'): |
|
import gzip |
|
global _fscores |
|
|
|
if name == "fpscores": |
|
name = op.join(op.dirname(__file__), name) |
|
data = pickle.load(gzip.open('%s.pkl.gz' % name)) |
|
outDict = {} |
|
for i in data: |
|
for j in range(1, len(i)): |
|
outDict[i[j]] = float(i[0]) |
|
_fscores = outDict |
|
|
|
def numBridgeheadsAndSpiro(mol, ri=None): |
|
nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol) |
|
nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol) |
|
return nBridgehead, nSpiro |
|
|
|
def calculateSAS(smiles_list): |
|
scores = [] |
|
for i, smiles in enumerate(smiles_list): |
|
mol = Chem.MolFromSmiles(smiles) |
|
score = calculateScore(mol) |
|
scores.append(score) |
|
return np.float32(scores) |
|
|
|
def calculateScore(m): |
|
if _fscores is None: |
|
readFragmentScores() |
|
|
|
|
|
fp = rdMolDescriptors.GetMorganFingerprint(m, |
|
2) |
|
fps = fp.GetNonzeroElements() |
|
score1 = 0. |
|
nf = 0 |
|
for bitId, v in fps.items(): |
|
nf += v |
|
sfp = bitId |
|
score1 += _fscores.get(sfp, -4) * v |
|
score1 /= nf |
|
|
|
|
|
nAtoms = m.GetNumAtoms() |
|
nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True)) |
|
ri = m.GetRingInfo() |
|
nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri) |
|
nMacrocycles = 0 |
|
for x in ri.AtomRings(): |
|
if len(x) > 8: |
|
nMacrocycles += 1 |
|
|
|
sizePenalty = nAtoms**1.005 - nAtoms |
|
stereoPenalty = math.log10(nChiralCenters + 1) |
|
spiroPenalty = math.log10(nSpiro + 1) |
|
bridgePenalty = math.log10(nBridgeheads + 1) |
|
macrocyclePenalty = 0. |
|
|
|
|
|
|
|
|
|
if nMacrocycles > 0: |
|
macrocyclePenalty = math.log10(2) |
|
|
|
score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty |
|
|
|
|
|
|
|
|
|
score3 = 0. |
|
if nAtoms > len(fps): |
|
score3 = math.log(float(nAtoms) / len(fps)) * .5 |
|
|
|
sascore = score1 + score2 + score3 |
|
|
|
|
|
min = -4.0 |
|
max = 2.5 |
|
sascore = 11. - (sascore - min + 1) / (max - min) * 9. |
|
|
|
if sascore > 8.: |
|
sascore = 8. + math.log(sascore + 1. - 9.) |
|
if sascore > 10.: |
|
sascore = 10.0 |
|
elif sascore < 1.: |
|
sascore = 1.0 |
|
|
|
return sascore |
|
|
|
|