liuganghuggingface commited on
Commit
6f3f870
·
verified ·
1 Parent(s): 1cf98a4

Upload graph_decoder/layers.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. graph_decoder/layers.py +132 -0
graph_decoder/layers.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 the Llamole team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from torch.jit import Final
16
+ import torch.nn.functional as F
17
+ from itertools import repeat
18
+ import collections.abc
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+
23
+ class Attention(nn.Module):
24
+ fast_attn: Final[bool]
25
+
26
+ def __init__(
27
+ self,
28
+ dim,
29
+ num_heads=8,
30
+ qkv_bias=False,
31
+ qk_norm=False,
32
+ attn_drop=0,
33
+ proj_drop=0,
34
+ norm_layer=nn.LayerNorm,
35
+ ):
36
+ super().__init__()
37
+ assert dim % num_heads == 0, "dim should be divisible by num_heads"
38
+ self.num_heads = num_heads
39
+ self.head_dim = dim // num_heads
40
+
41
+ self.scale = self.head_dim**-0.5
42
+ self.fast_attn = hasattr(
43
+ torch.nn.functional, "scaled_dot_product_attention"
44
+ ) # FIXME
45
+ assert self.fast_attn, "scaled_dot_product_attention Not implemented"
46
+
47
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
48
+
49
+ self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
50
+ self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
51
+ self.attn_drop = nn.Dropout(attn_drop)
52
+
53
+ self.proj = nn.Linear(dim, dim)
54
+ self.proj_drop = nn.Dropout(proj_drop)
55
+
56
+ def forward(self, x, node_mask):
57
+ B, N, D = x.shape
58
+
59
+ # B, head, N, head_dim
60
+ qkv = (
61
+ self.qkv(x)
62
+ .reshape(B, N, 3, self.num_heads, self.head_dim)
63
+ .permute(2, 0, 3, 1, 4)
64
+ )
65
+ q, k, v = qkv.unbind(0) # B, head, N, head_dim
66
+ q, k = self.q_norm(q), self.k_norm(k)
67
+
68
+ attn_mask = (node_mask[:, None, :, None] & node_mask[:, None, None, :]).expand(
69
+ -1, self.num_heads, N, N
70
+ )
71
+ extended_nodes = (attn_mask.sum(dim=-1) == 0)
72
+ attn_mask = attn_mask.clone()
73
+ attn_mask[extended_nodes] = True
74
+
75
+ x = F.scaled_dot_product_attention(
76
+ q,
77
+ k,
78
+ v,
79
+ dropout_p=self.attn_drop.p,
80
+ attn_mask=attn_mask,
81
+ )
82
+
83
+ x = x.transpose(1, 2).reshape(B, N, -1)
84
+ # if no extended nodes, set the output to 0
85
+ # x[~node_mask] = 0
86
+
87
+ x = self.proj(x)
88
+ x = self.proj_drop(x)
89
+
90
+ return x
91
+
92
+
93
+ class MLP(nn.Module):
94
+ def __init__(
95
+ self,
96
+ in_features,
97
+ hidden_features=None,
98
+ out_features=None,
99
+ act_layer=nn.GELU,
100
+ bias=True,
101
+ drop=0.0,
102
+ ):
103
+ super().__init__()
104
+ out_features = out_features or in_features
105
+ hidden_features = hidden_features or in_features
106
+ bias = to_2tuple(bias)
107
+ linear_layer = nn.Linear
108
+
109
+ self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
110
+ self.act = act_layer()
111
+ self.drop1 = nn.Dropout(drop)
112
+ self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
113
+
114
+ def forward(self, x):
115
+ x = self.fc1(x)
116
+ x = self.act(x)
117
+ x = self.drop1(x)
118
+ x = self.fc2(x)
119
+ return x
120
+
121
+
122
+ # From PyTorch internals
123
+ def _ntuple(n):
124
+ def parse(x):
125
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
126
+ return tuple(x)
127
+ return tuple(repeat(x, n))
128
+
129
+ return parse
130
+
131
+
132
+ to_2tuple = _ntuple(2)