Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,037 Bytes
3828b19 e428df4 5193f48 e428df4 5193f48 e428df4 5193f48 e428df4 5193f48 e428df4 5193f48 e428df4 6bc6b84 e428df4 5193f48 e428df4 5193f48 e428df4 3828b19 e428df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import spaces
import os
import shutil
import torch
import tempfile
import gradio as gr
from PIL import Image
from fastapi import FastAPI
import sys
sys.path.append('./')
from videollama2.constants import MMODAL_TOKEN_INDEX, DEFAULT_MMODAL_TOKEN
from videollama2.conversation import conv_templates, SeparatorStyle, Conversation
from videollama2.model.builder import load_pretrained_model
from videollama2.mm_utils import KeywordsStoppingCriteria, tokenizer_MMODAL_token, get_model_name_from_path, process_image, process_video
title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://s2.loli.net/2024/06/03/D3NeXHWy5az9tmT.png" alt="VideoLLaMA2π" style="max-width: 120px; height: auto;">
</a>
<div>
<h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
<h5 style="margin: 0;">If you like our project, please give us a star β¨ on Github for the latest update.</h5>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/pdf/2406.07476.pdf"><img src="https://img.shields.io/badge/Arxiv-2406.07476-red"></a>
<a href='https://github.com/DAMO-NLP-SG/VideoLLaMA2/stargazers'><img src='https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA2.svg?style=social'></a>
</div>
</div>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
class Chat:
def __init__(self, model_path, conv_mode, model_base=None, load_8bit=False, load_4bit=False, device='cuda'):
# disable_torch_init()
model_name = get_model_name_from_path(model_path)
self.tokenizer, self.model, processor, context_len = load_pretrained_model(
model_path, model_base, model_name,
load_8bit, load_4bit,
device=device,
offload_folder="save_folder")
self.processor = processor
self.conv_mode = conv_mode
self.conv = conv_templates[conv_mode].copy()
self.device = self.model.device
def get_prompt(self, qs, state):
state.append_message(state.roles[0], qs)
state.append_message(state.roles[1], None)
return state
@torch.inference_mode()
@spaces.GPU
def generate(self, tensor: list, modals: list, prompt: str, first_run: bool, state):
# TODO: support multiple turns of conversation.
assert len(tensor) == len(modals)
# 1. prepare model, tokenizer, and processor.
tokenizer, model, processor = self.tokenizer, self.model, self.processor
# 2. text preprocess (tag process & generate prompt).
state = self.get_prompt(prompt, state)
prompt = state.get_prompt()
# print('\n\n\n')
# print(prompt)
input_ids = tokenizer_MMODAL_token(prompt, tokenizer, MMODAL_TOKEN_INDEX[modals[0]], return_tensors='pt').unsqueeze(0).to(self.device)
# 3. generate response according to visual signals and prompts.
stop_str = self.conv.sep if self.conv.sep_style in [SeparatorStyle.SINGLE] else self.conv.sep2
# keywords = ["<s>", "</s>"]
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images_or_videos=tensor,
modal_list=modals,
do_sample=True,
temperature=0.2,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
print(outputs)
return outputs, state
def save_image_to_local(image):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
image = Image.open(image)
image.save(filename)
return filename
def save_video_to_local(video_path):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
shutil.copyfile(video_path, filename)
return filename
def generate(image, video, first_run, state, state_, textbox_in, tensor, modals, dtype=torch.float16):
flag = 1
if not textbox_in:
if len(state_.messages) > 0:
textbox_in = state_.messages[-1][1]
state_.messages.pop(-1)
flag = 0
else:
return "Please enter instruction"
image = image if image else "none"
video = video if video else "none"
assert not (os.path.exists(image) and os.path.exists(video))
if type(state) is not Conversation:
state = conv_templates[conv_mode].copy()
state_ = conv_templates[conv_mode].copy()
tensor = []
modals = []
first_run = False if len(state.messages) > 0 else True
text_en_in = textbox_in.replace("picture", "image")
processor = handler.processor
if os.path.exists(image) and not os.path.exists(video):
tensor.append(process_image(image, processor).to(handler.model.device, dtype=dtype))
modals.append('IMAGE')
if not os.path.exists(image) and os.path.exists(video):
tensor.append(process_video(video, processor).to(handler.model.device, dtype=dtype))
modals.append('VIDEO')
if os.path.exists(image) and os.path.exists(video):
raise NotImplementedError("Not support image and video at the same time")
# BUG: Only support single video and image inference now.
if os.path.exists(image) and not os.path.exists(video):
text_en_in = text_en_in.replace(DEFAULT_MMODAL_TOKEN['IMAGE'], '').strip()
text_en_in = DEFAULT_MMODAL_TOKEN['IMAGE'] + '\n' + text_en_in
if not os.path.exists(image) and os.path.exists(video):
text_en_in = text_en_in.replace(DEFAULT_MMODAL_TOKEN['VIDEO'], '').strip()
text_en_in = DEFAULT_MMODAL_TOKEN['VIDEO'] + '\n' + text_en_in
# if os.path.exists(image) and os.path.exists(video):
# pass
text_en_out, state_ = handler.generate(tensor, modals, text_en_in, first_run=first_run, state=state_)
state_.messages[-1] = (state_.roles[1], text_en_out)
text_en_out = text_en_out.split('#')[0]
textbox_out = text_en_out
show_images = ""
if os.path.exists(image):
filename = save_image_to_local(image)
show_images += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">'
if os.path.exists(video):
filename = save_video_to_local(video)
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={filename}"></video>'
if flag:
state.append_message(state.roles[0], textbox_in + "\n" + show_images)
state.append_message(state.roles[1], textbox_out)
return (gr.update(value=image if os.path.exists(image) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True),
state.to_gradio_chatbot(), False, state, state_, gr.update(value=None, interactive=True), tensor, modals)
def regenerate(state, state_, textbox, tensor, modals):
state.messages.pop(-1)
state_.messages.pop(-1)
tensor.pop(-1)
modals.pop(-1)
textbox = gr.update(value=None, interactive=True)
if len(state.messages) > 0:
return state, state_, textbox, state.to_gradio_chatbot(), False, tensor, modals
return state, state_, textbox, state.to_gradio_chatbot(), True, tensor, modals
def clear_history(state, state_, tensor, modals):
state = conv_templates[conv_mode].copy()
state_ = conv_templates[conv_mode].copy()
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True), \
state.to_gradio_chatbot(), \
True, state, state_, gr.update(value=None, interactive=True), [], [])
if __name__ == '__main__':
conv_mode = "llama_2"
model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B'
handler = Chat(model_path, conv_mode=conv_mode, load_8bit=False, load_4bit=False, device='cuda')
handler.model.to(dtype=torch.float16)
if not os.path.exists("temp"):
os.makedirs("temp")
app = FastAPI()
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title='VideoLLaMA2π', theme=gr.themes.Default(), css=block_css) as demo:
gr.Markdown(title_markdown)
state = gr.State()
state_ = gr.State()
first_run = gr.State()
tensor = gr.State()
modals = gr.State()
with gr.Row():
with gr.Column(scale=3):
image = gr.Image(label="Input Image", type="filepath")
video = gr.Video(label="Input Video")
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[
f"{cur_dir}/examples/extreme_ironing.jpg",
"What is unusual about this image?",
],
[
f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?",
],
[
f"{cur_dir}/examples/desert.jpg",
"If there are factual errors in the questions, point it out; if not, proceed answering the question. Whatβs happening in the desert?",
],
],
inputs=[image, textbox],
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="VideoLLaMA2", bubble_full_width=True).style(height=750)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True)
downvote_btn = gr.Button(value="π Downvote", interactive=True)
# flag_btn = gr.Button(value="β οΈ Flag", interactive=True)
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=True)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
submit_btn.click(generate, [image, video, first_run, state, state_, textbox, tensor, modals],
[image, video, chatbot, first_run, state, state_, textbox, tensor, modals])
regenerate_btn.click(regenerate, [state, state_, textbox, tensor, modals], [state, state_, textbox, chatbot, first_run, tensor, modals]).then(
generate, [image, video, first_run, state, state_, textbox, tensor, modals], [image, video, chatbot, first_run, state, state_, textbox, tensor, modals])
clear_btn.click(clear_history, [state, state_, tensor, modals],
[image, video, chatbot, first_run, state, state_, textbox, tensor, modals])
demo.launch()
|