Spaces:
Running
Running
File size: 11,055 Bytes
395d300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import albumentations as A
from albumentations import DualIAATransform, to_tuple
import imgaug.augmenters as iaa
import cv2
from tqdm import tqdm
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
from sklearn.utils import shuffle
import numpy as np
class IAAAffine2(DualIAATransform):
"""Place a regular grid of points on the input and randomly move the neighbourhood of these point around
via affine transformations.
Note: This class introduce interpolation artifacts to mask if it has values other than {0;1}
Args:
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, mask
"""
def __init__(
self,
scale=(0.7, 1.3),
translate_percent=None,
translate_px=None,
rotate=0.0,
shear=(-0.1, 0.1),
order=1,
cval=0,
mode="reflect",
always_apply=False,
p=0.5,
):
super(IAAAffine2, self).__init__(always_apply, p)
self.scale = dict(x=scale, y=scale)
self.translate_percent = to_tuple(translate_percent, 0)
self.translate_px = to_tuple(translate_px, 0)
self.rotate = to_tuple(rotate)
self.shear = dict(x=shear, y=shear)
self.order = order
self.cval = cval
self.mode = mode
@property
def processor(self):
return iaa.Affine(
self.scale,
self.translate_percent,
self.translate_px,
self.rotate,
self.shear,
self.order,
self.cval,
self.mode,
)
def get_transform_init_args_names(self):
return ("scale", "translate_percent", "translate_px", "rotate", "shear", "order", "cval", "mode")
class IAAPerspective2(DualIAATransform):
"""Perform a random four point perspective transform of the input.
Note: This class introduce interpolation artifacts to mask if it has values other than {0;1}
Args:
scale ((float, float): standard deviation of the normal distributions. These are used to sample
the random distances of the subimage's corners from the full image's corners. Default: (0.05, 0.1).
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, mask
"""
def __init__(self, scale=(0.05, 0.1), keep_size=True, always_apply=False, p=0.5,
order=1, cval=0, mode="replicate"):
super(IAAPerspective2, self).__init__(always_apply, p)
self.scale = to_tuple(scale, 1.0)
self.keep_size = keep_size
self.cval = cval
self.mode = mode
@property
def processor(self):
return iaa.PerspectiveTransform(self.scale, keep_size=self.keep_size, mode=self.mode, cval=self.cval)
def get_transform_init_args_names(self):
return ("scale", "keep_size")
def get_bg_transforms(transform_variant, out_size):
max_size = int(out_size * 1.2)
if transform_variant == 'train':
transform = [
A.SmallestMaxSize(max_size, always_apply=True, interpolation=cv2.INTER_AREA),
A.RandomResizedCrop(out_size, out_size, scale=(0.9, 1.5), p=1, ratio=(0.9, 1.1)),
]
else:
transform = [
A.SmallestMaxSize(out_size, always_apply=True),
A.RandomCrop(out_size, out_size, True),
]
return A.Compose(transform)
def get_fg_transforms(out_size, scale_limit=(-0.85, -0.3), transform_variant='train'):
if transform_variant == 'train':
transform = [
A.LongestMaxSize(out_size),
A.RandomScale(scale_limit=scale_limit, always_apply=True, interpolation=cv2.INTER_AREA),
IAAAffine2(scale=(1, 1),
rotate=(-15, 15),
shear=(-0.1, 0.1), p=0.3, mode='constant'),
IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
A.HorizontalFlip(),
A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT, p=0.3),
A.GridDistortion(border_mode=cv2.BORDER_CONSTANT, p=0.3)
]
elif transform_variant == 'distort_only':
transform = [
IAAAffine2(scale=(1, 1),
shear=(-0.1, 0.1), p=0.3, mode='constant'),
IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
A.HorizontalFlip(),
A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT, p=0.3),
A.GridDistortion(border_mode=cv2.BORDER_CONSTANT, p=0.3)
]
else:
transform = [
A.LongestMaxSize(out_size),
A.RandomScale(scale_limit=scale_limit, always_apply=True, interpolation=cv2.INTER_LINEAR)
]
return A.Compose(transform)
def get_transforms(transform_variant, out_size, to_float=True):
if transform_variant == 'distortions':
transform = [
IAAAffine2(scale=(1, 1.3),
rotate=(-20, 20),
shear=(-0.1, 0.1), p=1, mode='constant'),
IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
A.OpticalDistortion(),
A.HorizontalFlip(),
A.Sharpen(p=0.3),
A.CLAHE(),
A.GaussNoise(p=0.3),
A.Posterize(),
A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT),
]
elif transform_variant == 'default':
transform = [
A.HorizontalFlip(),
A.Rotate(20, p=0.3)
]
elif transform_variant == 'identity':
transform = []
else:
raise ValueError(f'Unexpected transform_variant {transform_variant}')
if to_float:
transform.append(A.ToFloat())
return A.Compose(transform)
def get_template_transforms(transform_variant, out_size, to_float=True):
if transform_variant == 'distortions':
transform = [
A.Cutout(p=0.3, max_w_size=30, max_h_size=30, num_holes=1),
IAAAffine2(scale=(1, 1.3),
rotate=(-20, 20),
shear=(-0.1, 0.1), p=1, mode='constant'),
IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
A.OpticalDistortion(),
A.HorizontalFlip(),
A.Sharpen(p=0.3),
A.CLAHE(),
A.GaussNoise(p=0.3),
A.Posterize(),
A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT),
]
elif transform_variant == 'identity':
transform = []
else:
raise ValueError(f'Unexpected transform_variant {transform_variant}')
if to_float:
transform.append(A.ToFloat())
return A.Compose(transform)
def rotate_image(mat: np.ndarray, angle: float, alpha_crop: bool = False) -> np.ndarray:
"""
Rotates an image (angle in degrees) and expands image to avoid cropping
# https://stackoverflow.com/questions/43892506/opencv-python-rotate-image-without-cropping-sides
"""
height, width = mat.shape[:2] # image shape has 3 dimensions
image_center = (width/2, height/2) # getRotationMatrix2D needs coordinates in reverse order (width, height) compared to shape
rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.)
# rotation calculates the cos and sin, taking absolutes of those.
abs_cos = abs(rotation_mat[0,0])
abs_sin = abs(rotation_mat[0,1])
# find the new width and height bounds
bound_w = int(height * abs_sin + width * abs_cos)
bound_h = int(height * abs_cos + width * abs_sin)
# subtract old image center (bringing image back to origo) and adding the new image center coordinates
rotation_mat[0, 2] += bound_w/2 - image_center[0]
rotation_mat[1, 2] += bound_h/2 - image_center[1]
# rotate image with the new bounds and translated rotation matrix
rotated_mat = cv2.warpAffine(mat, rotation_mat, (bound_w, bound_h))
if alpha_crop and len(rotated_mat.shape) == 3 and rotated_mat.shape[-1] == 4:
x, y, w, h = cv2.boundingRect(rotated_mat[..., -1])
rotated_mat = rotated_mat[y: y+h, x: x+w]
return rotated_mat
def recreate_image(codebook, labels, w, h):
"""Recreate the (compressed) image from the code book & labels"""
return (codebook[labels].reshape(w, h, -1) * 255).astype(np.uint8)
def quantize_image(image: np.ndarray, n_colors: int, method='kmeans', mask=None):
# https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
image = np.array(image, dtype=np.float64) / 255
if len(image.shape) == 3:
w, h, d = tuple(image.shape)
else:
w, h = image.shape
d = 1
# assert d == 3
image_array = image.reshape(-1, d)
if method == 'kmeans':
image_array_sample = None
if mask is not None:
ids = np.where(mask)
if len(ids[0]) > 10:
bg = image[ids][::2]
fg = image[np.where(mask == 0)]
max_bg_num = int(fg.shape[0] * 1.5)
if bg.shape[0] > max_bg_num:
bg = shuffle(bg, random_state=0, n_samples=max_bg_num)
image_array_sample = np.concatenate((fg, bg), axis=0)
if image_array_sample.shape[0] > 2048:
image_array_sample = shuffle(image_array_sample, random_state=0, n_samples=2048)
else:
image_array_sample = None
if image_array_sample is None:
image_array_sample = shuffle(image_array, random_state=0, n_samples=2048)
kmeans = KMeans(n_clusters=n_colors, n_init=10, random_state=0).fit(
image_array_sample
)
labels = kmeans.predict(image_array)
quantized = recreate_image(kmeans.cluster_centers_, labels, w, h)
return quantized, kmeans.cluster_centers_, labels
else:
codebook_random = shuffle(image_array, random_state=0, n_samples=n_colors)
labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0)
return [recreate_image(codebook_random, labels_random, w, h)]
def resize2height(img: np.ndarray, height: int):
im_h, im_w = img.shape[:2]
if im_h > height:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_LINEAR
if im_h != height:
img = cv2.resize(img, (int(height / im_h * im_w), height), interpolation=interpolation)
return img
if __name__ == '__main__':
import os.path as osp
img_path = r'tmp\megumin.png'
save_dir = r'tmp'
sample_num = 24
tv = 'distortions'
out_size = 224
transforms = get_transforms(tv, out_size ,to_float=False)
img = cv2.imread(img_path)
for idx in tqdm(range(sample_num)):
transformed = transforms(image=img)['image']
print(transformed.shape)
cv2.imwrite(osp.join(save_dir, str(idx)+'-transform.jpg'), transformed)
# cv2.waitKey(0)
pass |