Spaces:
Sleeping
Sleeping
import numpy as np | |
from typing import List, Union, Tuple | |
import torch | |
from utils.constants import COLOR_PALETTE | |
from utils.constants import get_color | |
import cv2 | |
def tags2multilines(tags: Union[str, List], lw, tf, max_width): | |
if isinstance(tags, str): | |
taglist = tags.split(' ') | |
else: | |
taglist = tags | |
sz = cv2.getTextSize(' ', 0, lw / 3, tf) | |
line_height = sz[0][1] | |
line_width = 0 | |
if len(taglist) > 0: | |
lines = [taglist[0]] | |
if len(taglist) > 1: | |
for t in taglist[1:]: | |
textl = len(t) * line_height | |
if line_width + line_height + textl > max_width: | |
lines.append(t) | |
line_width = 0 | |
else: | |
line_width = line_width + line_height + textl | |
lines[-1] = lines[-1] + ' ' + t | |
return lines, line_height | |
class AnimeInstances: | |
def __init__(self, | |
masks: Union[np.ndarray, torch.Tensor ]= None, | |
bboxes: Union[np.ndarray, torch.Tensor ] = None, | |
scores: Union[np.ndarray, torch.Tensor ] = None, | |
tags: List[str] = None, character_tags: List[str] = None) -> None: | |
self.masks = masks | |
self.tags = tags | |
self.bboxes = bboxes | |
if scores is None: | |
scores = [1.] * len(self) | |
if self.is_numpy: | |
scores = np.array(scores) | |
elif self.is_tensor: | |
scores = torch.tensor(scores) | |
self.scores = scores | |
if tags is None: | |
self.tags = [''] * len(self) | |
self.character_tags = [''] * len(self) | |
else: | |
self.tags = tags | |
self.character_tags = character_tags | |
def is_cuda(self): | |
if isinstance(self.masks, torch.Tensor) and self.masks.is_cuda: | |
return True | |
else: | |
return False | |
def is_tensor(self): | |
if self.is_empty: | |
return False | |
else: | |
return isinstance(self.masks, torch.Tensor) | |
def is_numpy(self): | |
if self.is_empty: | |
return True | |
else: | |
return isinstance(self.masks, np.ndarray) | |
def is_empty(self): | |
return self.masks is None or len(self.masks) == 0\ | |
def remove_duplicated(self): | |
num_masks = len(self) | |
if num_masks < 2: | |
return | |
need_cvt = False | |
if self.is_numpy: | |
need_cvt = True | |
self.to_tensor() | |
mask_areas = torch.Tensor([mask.sum() for mask in self.masks]) | |
sids = torch.argsort(mask_areas, descending=True) | |
sids = sids.cpu().numpy().tolist() | |
mask_areas = mask_areas[sids] | |
masks = self.masks[sids] | |
bboxes = self.bboxes[sids] | |
tags = [self.tags[sid] for sid in sids] | |
scores = self.scores[sids] | |
canvas = masks[0] | |
valid_ids: List = np.arange(num_masks).tolist() | |
for ii, mask in enumerate(masks[1:]): | |
mask_id = ii + 1 | |
canvas_and = torch.bitwise_and(canvas, mask) | |
and_area = canvas_and.sum() | |
mask_area = mask_areas[mask_id] | |
if and_area / mask_area > 0.8: | |
valid_ids.remove(mask_id) | |
elif mask_id != num_masks - 1: | |
canvas = torch.bitwise_or(canvas, mask) | |
sids = valid_ids | |
self.masks = masks[sids] | |
self.bboxes = bboxes[sids] | |
self.tags = [tags[sid] for sid in sids] | |
self.scores = scores[sids] | |
if need_cvt: | |
self.to_numpy() | |
# sids = | |
def draw_instances(self, | |
img: np.ndarray, | |
draw_bbox: bool = True, | |
draw_ins_mask: bool = True, | |
draw_ins_contour: bool = True, | |
draw_tags: bool = False, | |
draw_indices: List = None, | |
mask_alpha: float = 0.4): | |
mask_alpha = 0.75 | |
drawed = img.copy() | |
if self.is_empty: | |
return drawed | |
im_h, im_w = img.shape[:2] | |
mask_shape = self.masks[0].shape | |
if mask_shape[0] != im_h or mask_shape[1] != im_w: | |
drawed = cv2.resize(drawed, (mask_shape[1], mask_shape[0]), interpolation=cv2.INTER_AREA) | |
im_h, im_w = mask_shape[0], mask_shape[1] | |
if draw_indices is None: | |
draw_indices = list(range(len(self))) | |
ins_dict = {'mask': [], 'tags': [], 'score': [], 'bbox': [], 'character_tags': []} | |
colors = [] | |
for idx in draw_indices: | |
ins = self.get_instance(idx, out_type='numpy') | |
for key, data in ins.items(): | |
ins_dict[key].append(data) | |
colors.append(get_color(idx)) | |
if draw_bbox: | |
lw = max(round(sum(drawed.shape) / 2 * 0.003), 2) | |
for color, bbox in zip(colors, ins_dict['bbox']): | |
p1, p2 = (int(bbox[0]), int(bbox[1])), (int(bbox[2] + bbox[0]), int(bbox[3] + bbox[1])) | |
cv2.rectangle(drawed, p1, p2, color, thickness=lw, lineType=cv2.LINE_AA) | |
if draw_ins_mask: | |
drawed = drawed.astype(np.float32) | |
for color, mask in zip(colors, ins_dict['mask']): | |
p = mask.astype(np.float32) | |
blend_mask = np.full((im_h, im_w, 3), color, dtype=np.float32) | |
alpha_msk = (mask_alpha * p)[..., None] | |
alpha_ori = 1 - alpha_msk | |
drawed = drawed * alpha_ori + alpha_msk * blend_mask | |
drawed = drawed.astype(np.uint8) | |
if draw_tags: | |
lw = max(round(sum(drawed.shape) / 2 * 0.002), 2) | |
tf = max(lw - 1, 1) | |
for color, tags, bbox in zip(colors, ins_dict['tags'], ins_dict['bbox']): | |
if not tags: | |
continue | |
lines, line_height = tags2multilines(tags, lw, tf, bbox[2]) | |
for ii, l in enumerate(lines): | |
xy = (bbox[0], bbox[1] + line_height + int(line_height * 1.2 * ii)) | |
cv2.putText(drawed, l, xy, 0, lw / 3, color, thickness=tf, lineType=cv2.LINE_AA) | |
# cv2.imshow('canvas', drawed) | |
# cv2.waitKey(0) | |
return drawed | |
def cuda(self): | |
if self.is_empty: | |
return self | |
self.to_tensor(device='cuda') | |
return self | |
def cpu(self): | |
if not self.is_tensor or not self.is_cuda: | |
return self | |
self.masks = self.masks.cpu() | |
self.scores = self.scores.cpu() | |
self.bboxes = self.bboxes.cpu() | |
return self | |
def to_tensor(self, device: str = 'cpu'): | |
if self.is_empty: | |
return self | |
elif self.is_tensor and self.masks.device == device: | |
return self | |
self.masks = torch.from_numpy(self.masks).to(device) | |
self.bboxes = torch.from_numpy(self.bboxes).to(device) | |
self.scores = torch.from_numpy(self.scores ).to(device) | |
return self | |
def to_numpy(self): | |
if self.is_numpy: | |
return self | |
if self.is_cuda: | |
self.masks = self.masks.cpu().numpy() | |
self.scores = self.scores.cpu().numpy() | |
self.bboxes = self.bboxes.cpu().numpy() | |
else: | |
self.masks = self.masks.numpy() | |
self.scores = self.scores.numpy() | |
self.bboxes = self.bboxes.numpy() | |
return self | |
def get_instance(self, ins_idx: int, out_type: str = None, device: str = None): | |
mask = self.masks[ins_idx] | |
tags = self.tags[ins_idx] | |
character_tags = self.character_tags[ins_idx] | |
bbox = self.bboxes[ins_idx] | |
score = self.scores[ins_idx] | |
if out_type is not None: | |
if out_type == 'numpy' and not self.is_numpy: | |
mask = mask.cpu().numpy() | |
bbox = bbox.cpu().numpy() | |
score = score.cpu().numpy() | |
if out_type == 'tensor' and not self.is_tensor: | |
mask = torch.from_numpy(mask) | |
bbox = torch.from_numpy(bbox) | |
score = torch.from_numpy(score) | |
if isinstance(mask, torch.Tensor) and device is not None and mask.device != device: | |
mask = mask.to(device) | |
bbox = bbox.to(device) | |
score = score.to(device) | |
return { | |
'mask': mask, | |
'tags': tags, | |
'character_tags': character_tags, | |
'bbox': bbox, | |
'score': score | |
} | |
def __len__(self): | |
if self.is_empty: | |
return 0 | |
else: | |
return len(self.masks) | |
def resize(self, h, w, mode = 'area'): | |
if self.is_empty: | |
return | |
if self.is_tensor: | |
masks = self.masks.to(torch.float).unsqueeze(1) | |
oh, ow = masks.shape[2], masks.shape[3] | |
hs, ws = h / oh, w / ow | |
bboxes = self.bboxes.float() | |
bboxes[:, ::2] *= hs | |
bboxes[:, 1::2] *= ws | |
self.bboxes = torch.round(bboxes).int() | |
masks = torch.nn.functional.interpolate(masks, (h, w), mode=mode) | |
self.masks = masks.squeeze(1) > 0.3 | |
def compose_masks(self, output_type=None): | |
if self.is_empty: | |
return None | |
else: | |
mask = self.masks[0] | |
if len(self.masks) > 1: | |
for m in self.masks[1:]: | |
if self.is_numpy: | |
mask = np.logical_or(mask, m) | |
else: | |
mask = torch.logical_or(mask, m) | |
if output_type is not None: | |
if output_type == 'numpy' and not self.is_numpy: | |
mask = mask.cpu().numpy() | |
if output_type == 'tensor' and not self.is_tensor: | |
mask = torch.from_numpy(mask) | |
return mask | |