Spaces:
Sleeping
Sleeping
File size: 4,682 Bytes
19712a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import torch
from torch import Tensor, nn
import spaces
import numpy as np
import io
import base64
from flax import nnx
import jax.numpy as jnp
from jax import Array as Tensor
from transformers import (FlaxCLIPTextModel, CLIPTokenizer, FlaxT5EncoderModel,
T5Tokenizer)
class HFEmbedder(nnx.Module):
def __init__(self, version: str, max_length: int, **hf_kwargs):
self.is_clip = version.startswith("openai")
self.max_length = max_length
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
dtype = hf_kwargs.get("dtype", jnp.float32)
if self.is_clip:
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
# self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
self.hf_module, params = FlaxCLIPTextModel.from_pretrained(version, _do_init=False, **hf_kwargs)
else:
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
# self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
self.hf_module, params = FlaxT5EncoderModel.from_pretrained(version, _do_init=False,**hf_kwargs)
self.hf_module._is_initialized = True
import jax
self.hf_module.params = jax.tree_map(lambda x: jax.device_put(x, jax.devices("cuda")[0]), params)
# if dtype==jnp.bfloat16:
def tokenize(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="jax",
)
return batch_encoding["input_ids"]
def __call__(self, input_ids: Tensor) -> Tensor:
# outputs = self.hf_module(
# input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
# attention_mask=None,
# output_hidden_states=False,
# )
outputs = self.hf_module(
input_ids=input_ids,
attention_mask=None,
output_hidden_states=False,
train=False,
)
return outputs[self.output_key]
# def __call__(self, text: list[str]) -> Tensor:
# batch_encoding = self.tokenizer(
# text,
# truncation=True,
# max_length=self.max_length,
# return_length=False,
# return_overflowing_tokens=False,
# padding="max_length",
# return_tensors="jax",
# )
# # outputs = self.hf_module(
# # input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
# # attention_mask=None,
# # output_hidden_states=False,
# # )
# outputs = self.hf_module(
# input_ids=batch_encoding["input_ids"],
# attention_mask=None,
# output_hidden_states=False,
# train=False,
# )
# return outputs[self.output_key]
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
return HFEmbedder("lnyan/t5-v1_1-xxl-encoder", max_length=max_length, torch_dtype=jnp.bfloat16)
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=jnp.bfloat16)
@spaces.GPU(duration=30)
def load_encoders():
is_schnell = True
t5 = load_t5("cuda", max_length=256 if is_schnell else 512)
clip = load_clip("cuda")
return t5, clip
import numpy as np
def b64(txt,vec):
buffer = io.BytesIO()
jnp.savez(buffer, txt=txt, vec=vec)
buffer.seek(0)
encoded = base64.b64encode(buffer.getvalue()).decode('utf-8')
return encoded
t5,clip=load_encoders()
@spaces.GPU(duration=10)
def convert(prompt):
if isinstance(prompt, str):
prompt = [prompt]
txt = t5.tokenize(prompt)
txt = t5(txt)
vec = clip.tokenize(prompt)
vec = clip(vec)
return b64(txt,vec)
with gr.Blocks() as demo:
gr.Markdown("""A workaround for flux-flax to fit into 40G VRAM""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="prompt")
convert_btn = gr.Button(value="Convert")
with gr.Column():
output = gr.Textbox(label="output")
convert_btn.click(convert, inputs=prompt, outputs=output, api_name="convert")
demo.launch()
|