Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,849 Bytes
19712a8 f1d2416 19712a8 f1d2416 19712a8 61b0e28 19712a8 61b0e28 19712a8 8ad6ef6 19712a8 f1d2416 19712a8 8ad6ef6 19712a8 f1d2416 19712a8 8ad6ef6 f1d2416 8ad6ef6 f1d2416 8ad6ef6 19712a8 f1d2416 266a16a 19712a8 8ad6ef6 f1d2416 19712a8 f1d2416 19712a8 8ad6ef6 19712a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import torch
from torch import Tensor, nn
import spaces
import numpy as np
import io
import base64
from flax import nnx
import jax.numpy as jnp
from jax import Array as Tensor
from transformers import (FlaxCLIPTextModel, CLIPTokenizer, FlaxT5EncoderModel,
T5Tokenizer)
models = {}
class HFEmbedder(nnx.Module):
def __init__(self, version: str, max_length: int, **hf_kwargs):
self.is_clip = version.startswith("openai")
self.max_length = max_length
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
dtype = hf_kwargs.get("dtype", jnp.float32)
if self.is_clip:
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
# self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
self.hf_module, params = FlaxCLIPTextModel.from_pretrained(version, _do_init=False, **hf_kwargs)
else:
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
# self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
self.hf_module, params = FlaxT5EncoderModel.from_pretrained(version, _do_init=False,**hf_kwargs)
self.hf_module._is_initialized = True
import jax
self.hf_module.params = jax.tree.map(lambda x: jax.device_put(x, jax.devices("cuda")[0]), params)
# if dtype==jnp.bfloat16:
def tokenize(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="jax",
)
return batch_encoding["input_ids"]
def __call__(self, input_ids: Tensor) -> Tensor:
# outputs = self.hf_module(
# input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
# attention_mask=None,
# output_hidden_states=False,
# )
outputs = self.hf_module(
input_ids=input_ids,
attention_mask=None,
output_hidden_states=False,
train=False,
)
return outputs[self.output_key]
# def __call__(self, text: list[str]) -> Tensor:
# batch_encoding = self.tokenizer(
# text,
# truncation=True,
# max_length=self.max_length,
# return_length=False,
# return_overflowing_tokens=False,
# padding="max_length",
# return_tensors="jax",
# )
# # outputs = self.hf_module(
# # input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
# # attention_mask=None,
# # output_hidden_states=False,
# # )
# outputs = self.hf_module(
# input_ids=batch_encoding["input_ids"],
# attention_mask=None,
# output_hidden_states=False,
# train=False,
# )
# return outputs[self.output_key]
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
return HFEmbedder("lnyan/t5-v1_1-xxl-encoder", max_length=max_length, dtype=jnp.bfloat16)
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, dtype=jnp.bfloat16)
@spaces.GPU(duration=60)
def load_encoders():
is_schnell = True
t5 = load_t5("cuda", max_length=256 if is_schnell else 512)
clip = load_clip("cuda")
return t5, clip
import numpy as np
def b64(txt,vec):
buffer = io.BytesIO()
jnp.savez(buffer, txt=txt, vec=vec)
buffer.seek(0)
encoded = base64.b64encode(buffer.getvalue()).decode('utf-8')
return encoded
# t5,clip=load_encoders()
@spaces.GPU(duration=20)
def convert(prompt):
t5,clip=models["t5"],models["clip"]
if isinstance(prompt, str):
prompt = [prompt]
txt = t5.tokenize(prompt)
txt = t5(txt)
vec = clip.tokenize(prompt)
vec = clip(vec)
return b64(txt,vec)
import jax
def _to_embed(t5, clip, txt, vec):
t5=nnx.merge(*t5)
clip=nnx.merge(*clip)
return t5(txt), clip(vec)
to_embed=jax.jit(_to_embed)
# t5_tuple=nnx.split(t5)
# clip_tuple=nnx.split(clip)
@spaces.GPU(duration=120)
def compile(prompt):
t5,clip,t5_tuple,clip_tuple=models["t5"],models["clip"],models["t5_tuple"],models["clip_tuple"]
if isinstance(prompt, str):
prompt = [prompt]
txt = t5.tokenize(prompt)
vec = clip.tokenize(prompt)
text,vec=to_embed(t5_tuple,clip_tuple,txt,vec)
return b64(txt,vec)
@spaces.GPU(duration=120)
def load(prompt):
is_schnell = True
t5 = load_t5("cuda", max_length=256 if is_schnell else 512)
clip = load_clip("cuda")
models["t5"]=t5
models["clip"]=clip
models["t5_tuple"]=nnx.split(t5)
models["clip_tuple"]=nnx.split(clip)
return "Loaded"
print(load(""))
with gr.Blocks() as demo:
gr.Markdown("""A workaround for flux-flax to fit into 40G VRAM""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="prompt")
convert_btn = gr.Button(value="Convert")
compile_btn = gr.Button(value="Compile")
load_btn = gr.Button(value="Load")
with gr.Column():
output = gr.Textbox(label="output")
load_btn.click(load, inputs=prompt, outputs=output, api_name="load")
convert_btn.click(convert, inputs=prompt, outputs=output, api_name="convert")
compile_btn.click(compile, inputs=prompt, outputs=output, api_name="compile")
demo.launch()
|