|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import builtins |
|
|
|
from . import Image, _imagingmath |
|
|
|
|
|
def _isconstant(v): |
|
return isinstance(v, (int, float)) |
|
|
|
|
|
class _Operand: |
|
"""Wraps an image operand, providing standard operators""" |
|
|
|
def __init__(self, im): |
|
self.im = im |
|
|
|
def __fixup(self, im1): |
|
|
|
if isinstance(im1, _Operand): |
|
|
|
if im1.im.mode in ("1", "L"): |
|
return im1.im.convert("I") |
|
elif im1.im.mode in ("I", "F"): |
|
return im1.im |
|
else: |
|
msg = f"unsupported mode: {im1.im.mode}" |
|
raise ValueError(msg) |
|
else: |
|
|
|
if _isconstant(im1) and self.im.mode in ("1", "L", "I"): |
|
return Image.new("I", self.im.size, im1) |
|
else: |
|
return Image.new("F", self.im.size, im1) |
|
|
|
def apply(self, op, im1, im2=None, mode=None): |
|
im1 = self.__fixup(im1) |
|
if im2 is None: |
|
|
|
out = Image.new(mode or im1.mode, im1.size, None) |
|
im1.load() |
|
try: |
|
op = getattr(_imagingmath, op + "_" + im1.mode) |
|
except AttributeError as e: |
|
msg = f"bad operand type for '{op}'" |
|
raise TypeError(msg) from e |
|
_imagingmath.unop(op, out.im.id, im1.im.id) |
|
else: |
|
|
|
im2 = self.__fixup(im2) |
|
if im1.mode != im2.mode: |
|
|
|
if im1.mode != "F": |
|
im1 = im1.convert("F") |
|
if im2.mode != "F": |
|
im2 = im2.convert("F") |
|
if im1.size != im2.size: |
|
|
|
size = (min(im1.size[0], im2.size[0]), min(im1.size[1], im2.size[1])) |
|
if im1.size != size: |
|
im1 = im1.crop((0, 0) + size) |
|
if im2.size != size: |
|
im2 = im2.crop((0, 0) + size) |
|
out = Image.new(mode or im1.mode, im1.size, None) |
|
im1.load() |
|
im2.load() |
|
try: |
|
op = getattr(_imagingmath, op + "_" + im1.mode) |
|
except AttributeError as e: |
|
msg = f"bad operand type for '{op}'" |
|
raise TypeError(msg) from e |
|
_imagingmath.binop(op, out.im.id, im1.im.id, im2.im.id) |
|
return _Operand(out) |
|
|
|
|
|
def __bool__(self): |
|
|
|
return self.im.getbbox() is not None |
|
|
|
def __abs__(self): |
|
return self.apply("abs", self) |
|
|
|
def __pos__(self): |
|
return self |
|
|
|
def __neg__(self): |
|
return self.apply("neg", self) |
|
|
|
|
|
def __add__(self, other): |
|
return self.apply("add", self, other) |
|
|
|
def __radd__(self, other): |
|
return self.apply("add", other, self) |
|
|
|
def __sub__(self, other): |
|
return self.apply("sub", self, other) |
|
|
|
def __rsub__(self, other): |
|
return self.apply("sub", other, self) |
|
|
|
def __mul__(self, other): |
|
return self.apply("mul", self, other) |
|
|
|
def __rmul__(self, other): |
|
return self.apply("mul", other, self) |
|
|
|
def __truediv__(self, other): |
|
return self.apply("div", self, other) |
|
|
|
def __rtruediv__(self, other): |
|
return self.apply("div", other, self) |
|
|
|
def __mod__(self, other): |
|
return self.apply("mod", self, other) |
|
|
|
def __rmod__(self, other): |
|
return self.apply("mod", other, self) |
|
|
|
def __pow__(self, other): |
|
return self.apply("pow", self, other) |
|
|
|
def __rpow__(self, other): |
|
return self.apply("pow", other, self) |
|
|
|
|
|
def __invert__(self): |
|
return self.apply("invert", self) |
|
|
|
def __and__(self, other): |
|
return self.apply("and", self, other) |
|
|
|
def __rand__(self, other): |
|
return self.apply("and", other, self) |
|
|
|
def __or__(self, other): |
|
return self.apply("or", self, other) |
|
|
|
def __ror__(self, other): |
|
return self.apply("or", other, self) |
|
|
|
def __xor__(self, other): |
|
return self.apply("xor", self, other) |
|
|
|
def __rxor__(self, other): |
|
return self.apply("xor", other, self) |
|
|
|
def __lshift__(self, other): |
|
return self.apply("lshift", self, other) |
|
|
|
def __rshift__(self, other): |
|
return self.apply("rshift", self, other) |
|
|
|
|
|
def __eq__(self, other): |
|
return self.apply("eq", self, other) |
|
|
|
def __ne__(self, other): |
|
return self.apply("ne", self, other) |
|
|
|
def __lt__(self, other): |
|
return self.apply("lt", self, other) |
|
|
|
def __le__(self, other): |
|
return self.apply("le", self, other) |
|
|
|
def __gt__(self, other): |
|
return self.apply("gt", self, other) |
|
|
|
def __ge__(self, other): |
|
return self.apply("ge", self, other) |
|
|
|
|
|
|
|
def imagemath_int(self): |
|
return _Operand(self.im.convert("I")) |
|
|
|
|
|
def imagemath_float(self): |
|
return _Operand(self.im.convert("F")) |
|
|
|
|
|
|
|
def imagemath_equal(self, other): |
|
return self.apply("eq", self, other, mode="I") |
|
|
|
|
|
def imagemath_notequal(self, other): |
|
return self.apply("ne", self, other, mode="I") |
|
|
|
|
|
def imagemath_min(self, other): |
|
return self.apply("min", self, other) |
|
|
|
|
|
def imagemath_max(self, other): |
|
return self.apply("max", self, other) |
|
|
|
|
|
def imagemath_convert(self, mode): |
|
return _Operand(self.im.convert(mode)) |
|
|
|
|
|
ops = {} |
|
for k, v in list(globals().items()): |
|
if k[:10] == "imagemath_": |
|
ops[k[10:]] = v |
|
|
|
|
|
def eval(expression, _dict={}, **kw): |
|
""" |
|
Evaluates an image expression. |
|
|
|
:param expression: A string containing a Python-style expression. |
|
:param options: Values to add to the evaluation context. You |
|
can either use a dictionary, or one or more keyword |
|
arguments. |
|
:return: The evaluated expression. This is usually an image object, but can |
|
also be an integer, a floating point value, or a pixel tuple, |
|
depending on the expression. |
|
""" |
|
|
|
|
|
args = ops.copy() |
|
args.update(_dict) |
|
args.update(kw) |
|
for k, v in list(args.items()): |
|
if hasattr(v, "im"): |
|
args[k] = _Operand(v) |
|
|
|
compiled_code = compile(expression, "<string>", "eval") |
|
|
|
def scan(code): |
|
for const in code.co_consts: |
|
if type(const) is type(compiled_code): |
|
scan(const) |
|
|
|
for name in code.co_names: |
|
if name not in args and name != "abs": |
|
msg = f"'{name}' not allowed" |
|
raise ValueError(msg) |
|
|
|
scan(compiled_code) |
|
out = builtins.eval(expression, {"__builtins": {"abs": abs}}, args) |
|
try: |
|
return out.im |
|
except AttributeError: |
|
return out |
|
|