pratyushmaini commited on
Commit
cf8c271
Β·
1 Parent(s): 987cfd4
Files changed (4) hide show
  1. app.py +1 -14
  2. app_bkp.py +0 -59
  3. app_old.py +0 -128
  4. plotter.py +80 -0
app.py CHANGED
@@ -20,20 +20,7 @@ def change_version(version):
20
  return new_df
21
 
22
  # Function to create plots
23
- def create_plots(df, selected_methods):
24
- if not selected_methods:
25
- return plt.figure() # Return an empty plot if no method is selected
26
-
27
- filtered_df = df[df['Method'].isin(selected_methods)]
28
- fig, ax = plt.subplots()
29
- for method in selected_methods:
30
- method_df = filtered_df[filtered_df['Method'] == method]
31
- ax.plot(method_df['PPL'], label=method) # Example: Plotting PPL, replace with your metrics
32
-
33
- ax.set_xlabel('Index') # Modify as per your data
34
- ax.set_ylabel('PPL') # Modify as per your data
35
- ax.legend()
36
- return fig
37
 
38
  # Initialize Gradio app
39
  demo = gr.Blocks()
 
20
  return new_df
21
 
22
  # Function to create plots
23
+ from plotter import create_plots
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  # Initialize Gradio app
26
  demo = gr.Blocks()
app_bkp.py DELETED
@@ -1,59 +0,0 @@
1
- import gradio as gr
2
- import pandas as pd
3
-
4
- # Function to load data from a given CSV file
5
- def load_data(version):
6
- file_path = f'versions/{version}.csv' # Assuming filenames are version1.csv, version2.csv, version3.csv
7
- return pd.read_csv(file_path)
8
-
9
- # Function for searching in the leaderboard
10
- def search_leaderboard(df, query):
11
- if query == "":
12
- return df
13
- else:
14
- return df[df['Method'].str.contains(query)]
15
-
16
- # Function to change the version of the leaderboard
17
- def change_version(version):
18
- new_df = load_data(version)
19
- return new_df
20
-
21
- # Initialize Gradio app
22
- demo = gr.Blocks()
23
-
24
- with demo:
25
- gr.Markdown("## πŸ₯‡ TOFU Leaderboard")
26
-
27
- with gr.Row():
28
- version_dropdown = gr.Dropdown(
29
- choices=["llama", "phi", "stable-lm"],
30
- label="πŸ”„ Select Base Model",
31
- value="llama",
32
- )
33
-
34
- with gr.Row():
35
- search_bar = gr.Textbox(
36
- placeholder="Search for methods...",
37
- show_label=False,
38
- )
39
-
40
- leaderboard_table = gr.components.Dataframe(
41
- value=load_data("llama"), # Load initial version (version llama)
42
- interactive=True,
43
- visible=True,
44
- )
45
-
46
- version_dropdown.change(
47
- change_version,
48
- inputs=version_dropdown,
49
- outputs=leaderboard_table
50
- )
51
-
52
- search_bar.change(
53
- search_leaderboard,
54
- inputs=[leaderboard_table, search_bar],
55
- outputs=leaderboard_table
56
- )
57
-
58
- # Launch the app
59
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app_old.py DELETED
@@ -1,128 +0,0 @@
1
- import gradio as gr
2
-
3
- from src.assets.text_content import TITLE, INTRODUCTION_TEXT
4
- from src.utils import get_data, compare_plots, filter_search
5
-
6
- ############################ For Leaderboards #############################
7
- DATA_PATH = 'versions'
8
- latest_flag = True #Set flag to iclude latest data inz Details and Versions Tab
9
- latest_df, latest_vname, previous_df, previous_vname = get_data(DATA_PATH, latest_flag)
10
-
11
- global prev_df
12
- prev_df = previous_df[0]
13
- def select_prev_df(name):
14
- ind = previous_vname.index(name)
15
- prev_df = previous_df[ind]
16
- return prev_df
17
-
18
- ############################ For Plots ####################################
19
- global plot_df, MODEL_COLS
20
- plot_df = latest_df[0]
21
- MODEL_COLS = list(plot_df['Model'].unique())
22
-
23
-
24
- ############# MAIN APPLICATION ######################
25
- demo = gr.Blocks()
26
- with demo:
27
- gr.HTML(TITLE)
28
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
29
-
30
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
31
- with gr.TabItem("πŸ₯‡ TOFU Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
32
- with gr.Row():
33
- search_bar = gr.Textbox(
34
- placeholder=" πŸ” Search for models - separate multiple queries with `;` and press ENTER...",
35
- show_label=False,
36
- elem_id="search-bar",
37
- )
38
-
39
- leaderboard_table = gr.components.Dataframe(
40
- value=latest_df[0],
41
- elem_id="leaderboard-table",
42
- interactive=False,
43
- visible=True,
44
- )
45
-
46
- # Add a dummy leaderboard to handle search queries from the latest_df and not update latest_df
47
- dummy_leaderboard_table = gr.components.Dataframe(
48
- value=latest_df[0],
49
- elem_id="leaderboard-table",
50
- interactive=False,
51
- visible=False,
52
- )
53
-
54
- search_bar.submit(
55
- filter_search,
56
- [dummy_leaderboard_table, search_bar],
57
- leaderboard_table,
58
- queue=True
59
- )
60
- with gr.TabItem("πŸ“ˆ Plot", id=3):
61
- with gr.Row():
62
- model_cols = gr.CheckboxGroup(
63
- MODEL_COLS,
64
- label="Select Models πŸ€–",
65
- value=[],
66
- elem_id="column-select",
67
- interactive=True,
68
- )
69
-
70
- with gr.Row():
71
- plot_grdf = gr.DataFrame(
72
- value=plot_df,
73
- visible=False
74
- )
75
- with gr.Row():
76
- # Output block for the plot
77
- plot_output = gr.Plot()
78
-
79
- model_cols.change(
80
- compare_plots,
81
- [plot_grdf, model_cols],
82
- plot_output,
83
- queue=True
84
- )
85
-
86
- with gr.TabItem("πŸ”„ Versions and Details", elem_id="details", id=2):
87
- with gr.Row():
88
- ver_selection = gr.Dropdown(
89
- previous_vname, label="Select Version πŸ•ΉοΈ", value=previous_vname[0]
90
- )
91
- with gr.Row():
92
- search_bar_prev = gr.Textbox(
93
- placeholder=" πŸ” Search for models - separate multiple queries with `;` and press ENTER...",
94
- show_label=False,
95
- elem_id="search-bar-2",
96
- )
97
-
98
- prev_table = gr.components.Dataframe(
99
- value=prev_df,
100
- elem_id="leaderboard-table",
101
- interactive=False,
102
- visible=True,
103
- )
104
-
105
- dummy_prev_table = gr.components.Dataframe(
106
- value=prev_df,
107
- elem_id="leaderboard-table",
108
- interactive=False,
109
- visible=False,
110
- )
111
-
112
- search_bar_prev.submit(
113
- filter_search,
114
- [dummy_prev_table, search_bar_prev],
115
- prev_table,
116
- queue=True
117
- )
118
-
119
- ver_selection.change(
120
- select_prev_df,
121
- [ver_selection],
122
- prev_table,
123
- queue=True
124
- )
125
-
126
- demo.load()
127
- demo.queue()
128
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
plotter.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import seaborn as sns
2
+ import matplotlib.pyplot as plt
3
+ import pandas as pd
4
+ import numpy as np
5
+ import scipy.stats as stats
6
+
7
+ import warnings
8
+ warnings.simplefilter("ignore", category=Warning)
9
+
10
+ def custom_agg(x):
11
+ result = stats.hmean(x)
12
+ return result
13
+
14
+ def create_plots(big_df, selected_methods):
15
+ big_df = big_df[big_df['Method'].isin(selected_methods)]
16
+ # we want 1-Rouge-P
17
+ big_df["ROUGE-P Forget"] = 1 - big_df["ROUGE-P Forget"]
18
+
19
+ metrics = list(big_df.columns)
20
+ metrics.remove("Method")
21
+ metrics.remove("Model")
22
+ metrics.remove("Forget Rate")
23
+ metrics.remove("LR")
24
+ metrics.remove("Epoch")
25
+ metrics.remove("Compute")
26
+
27
+ print(metrics)
28
+ # Apply the custom aggregation function across each row, excluding the first column
29
+ row_custom_agg = big_df.iloc[:, -len(metrics):].apply(custom_agg, axis=1)
30
+
31
+ # If you want to add these results back to your original DataFrame
32
+ big_df['MAPO'] = row_custom_agg
33
+ big_df["LR"] = big_df["LR"].astype(float)
34
+ # big_df = big_df[big_df["LR"] >= 1e-5]
35
+ big_df["ROUGE-P Forget"] = 1 - big_df["ROUGE-P Forget"]
36
+
37
+ big_df.reset_index(inplace=True)
38
+ print(big_df[["Method", "Model", "Forget Rate", "LR", "Epoch", "ROUGE-P Forget", "MAPO"]].round(2).to_markdown())
39
+
40
+ # print(big_df.groupby(['Method', 'Model', 'Forget Rate']).head())
41
+ result = big_df.loc[big_df.groupby(['Method', 'Model', 'Forget Rate'])['MAPO'].idxmax()]
42
+ print(result[["Method", "Model", "Forget Rate", "LR", "Epoch", "MAPO"]].round(6).to_markdown())
43
+ # exit()
44
+
45
+ plot_legend = False
46
+ fs = 18 if plot_legend else 22
47
+ metrics.append("MAPO")
48
+
49
+ # Set the style of the visualization
50
+ sns.set_theme(style="whitegrid")
51
+ plt.rcParams['font.family'] = 'Times New Roman'
52
+
53
+ for metric_to_plot in metrics:
54
+ sub_df = result[big_df["Model"] == "Llama-2-7B"]
55
+ fig, ax = plt.subplots(figsize=(15, 5))
56
+ sns.barplot(x="Method", y=metric_to_plot, hue="Forget Rate", data=sub_df, ax=ax, legend=plot_legend)
57
+ ax.set_ylabel(metric_to_plot, fontsize=fs)
58
+ ax.set_ylim(0.0, 1.0)
59
+ ax.set_xlabel("", fontsize=fs)
60
+ ax.set_xticklabels(ax.get_xticklabels(), fontsize=fs)
61
+ ax.set_yticklabels(ax.get_yticklabels(), fontsize=fs-4)
62
+ ax.spines[['right', 'top']].set_visible(False)
63
+ if plot_legend:
64
+ plt.legend(loc='upper left', bbox_to_anchor=(1.05, 1), title="Forget Rate (%)")
65
+ plt.title(metric_to_plot + " on Llama-2-7B", fontsize=fs)
66
+ plt.tight_layout()
67
+ plt.savefig(f"barplots/{metric_to_plot}-Llama-2-7B{'legend' if plot_legend else ''}.pdf")
68
+ print(f"\includegraphics[width=\\textwidth]{{figures/barplots/{metric_to_plot}-Llama-2-7B{'legend' if plot_legend else ''}.pdf}}")
69
+ plt.close(fig)
70
+
71
+ for model in ["Llama-2-7B", "Phi"]:
72
+ sub_df = result[result["Model"] == model][["Method", "Forget Rate", "MAPO"]]
73
+ # print(sub_df.round(6).to_latex(index=False))
74
+ sub_df.reset_index(inplace=True)
75
+
76
+ # Reorienting the dataframe
77
+ sub_df_reoriented = sub_df.pivot(index="Method", columns='Forget Rate', values='MAPO')
78
+
79
+ # Output a latex table of the MAPO values by Method and Forget Rate
80
+ print(sub_df_reoriented.round(4).to_latex(index=True))